enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bootstrap error-adjusted single-sample technique - Wikipedia

    en.wikipedia.org/wiki/Bootstrap_error-adjusted...

    Please help improve it to make it understandable to non-experts, without removing the technical details. ( March 2011 ) ( Learn how and when to remove this message ) In statistics , the bootstrap error-adjusted single-sample technique ( BEST or the BEAST ) is a non-parametric method that is intended to allow an assessment to be made of the ...

  3. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    A key result in Efron's seminal paper that introduced the bootstrap [4] is the favorable performance of bootstrap methods using sampling with replacement compared to prior methods like the jackknife that sample without replacement. However, since its introduction, numerous variants on the bootstrap have been proposed, including methods that ...

  4. Nonparametric statistics - Wikipedia

    en.wikipedia.org/wiki/Nonparametric_statistics

    Non-parametric (or distribution-free) inferential statistical methods are mathematical procedures for statistical hypothesis testing which, unlike parametric statistics, make no assumptions about the probability distributions of the variables being assessed. The most frequently used tests include

  5. Resampling (statistics) - Wikipedia

    en.wikipedia.org/wiki/Resampling_(statistics)

    The best example of the plug-in principle, the bootstrapping method. Bootstrapping is a statistical method for estimating the sampling distribution of an estimator by sampling with replacement from the original sample, most often with the purpose of deriving robust estimates of standard errors and confidence intervals of a population parameter like a mean, median, proportion, odds ratio ...

  6. Bootstrapping - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping

    In general, bootstrapping usually refers to a self-starting process that is supposed to continue or grow without external input. Many analytical techniques are often called bootstrap methods in reference to their self-starting or self-supporting implementation, such as bootstrapping (statistics), bootstrapping (finance), or bootstrapping (linguistics).

  7. Nonparametric regression - Wikipedia

    en.wikipedia.org/wiki/Nonparametric_regression

    That is, no parametric equation is assumed for the relationship between predictors and dependent variable. Nonparametric regression requires larger sample sizes than regression based on parametric models because the data must supply the model structure as well as the parameter estimates.

  8. Category:Nonparametric statistics - Wikipedia

    en.wikipedia.org/wiki/Category:Nonparametric...

    Nonparametric models are therefore also called distribution free. Nonparametric (or distribution-free) inferential statistical methods are mathematical procedures for statistical hypothesis testing which, unlike parametric statistics, make no assumptions about the frequency distributions of the variables being assessed.

  9. Jackknife resampling - Wikipedia

    en.wikipedia.org/wiki/Jackknife_resampling

    The jackknife pre-dates other common resampling methods such as the bootstrap. Given a sample of size n {\displaystyle n} , a jackknife estimator can be built by aggregating the parameter estimates from each subsample of size ( n − 1 ) {\displaystyle (n-1)} obtained by omitting one observation.