enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quadrature of the Parabola - Wikipedia

    en.wikipedia.org/wiki/Quadrature_of_the_Parabola

    A parabolic segment is the region bounded by a parabola and line. To find the area of a parabolic segment, Archimedes considers a certain inscribed triangle. The base of this triangle is the given chord of the parabola, and the third vertex is the point on the parabola such that the tangent to the parabola at that point is parallel to the chord ...

  3. 1/4 + 1/16 + 1/64 + 1/256 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1/4_%2B_1/16_%2B_1/64_%2B...

    Archimedes encounters the series in his work Quadrature of the Parabola. He finds the area inside a parabola by the method of exhaustion, and he gets a series of triangles; each stage of the construction adds an area ⁠ 1 / 4 ⁠ times the area of the previous stage. His desired result is that the total area is ⁠ 4 / 3 ⁠ times the area of ...

  4. The Method of Mechanical Theorems - Wikipedia

    en.wikipedia.org/wiki/The_Method_of_Mechanical...

    Archimedes' idea is to use the law of the lever to determine the areas of figures from the known center of mass of other figures. [1]: 8 The simplest example in modern language is the area of the parabola. A modern approach would be to find this area by calculating the integral

  5. Calculus - Wikipedia

    en.wikipedia.org/wiki/Calculus

    Archimedes used the method of exhaustion to calculate the area under a parabola in his work Quadrature of the Parabola. Laying the foundations for integral calculus and foreshadowing the concept of the limit, ancient Greek mathematician Eudoxus of Cnidus ( c. 390–337 BC ) developed the method of exhaustion to prove the formulas for cone and ...

  6. Method of exhaustion - Wikipedia

    en.wikipedia.org/wiki/Method_of_exhaustion

    Archimedes used the method of exhaustion to compute the area inside a circle. Archimedes used the method of exhaustion as a way to compute the area inside a circle by filling the circle with a sequence of polygons with an increasing number of sides and a corresponding increase in area.

  7. Parabola - Wikipedia

    en.wikipedia.org/wiki/Parabola

    The curve of the chains of a suspension bridge is always an intermediate curve between a parabola and a catenary, but in practice the curve is generally nearer to a parabola due to the weight of the load (i.e. the road) being much larger than the cables themselves, and in calculations the second-degree polynomial formula of a parabola is used.

  8. Arc length - Wikipedia

    en.wikipedia.org/wiki/Arc_length

    In 1659 van Heuraet published a construction showing that the problem of determining arc length could be transformed into the problem of determining the area under a curve (i.e., an integral). As an example of his method, he determined the arc length of a semicubical parabola, which required finding the area under a parabola. [9]

  9. Archimedes - Wikipedia

    en.wikipedia.org/wiki/Archimedes

    Archimedes' achievements in this area include a proof of the law of the lever, [10] the widespread use of the concept of center of gravity, [11] and the enunciation of the law of buoyancy known as Archimedes' principle. [12] In astronomy, he made measurements of the apparent diameter of the Sun and the size of the universe.