Search results
Results from the WOW.Com Content Network
The most notable shared characteristic is the presence of cortical (near the surface) alveoli (sacs). These are flattened vesicles (sacs) arranged as a layer just under the membrane and supporting it, typically contributing to a flexible pellicle (thin skin). In armored dinoflagellates they may contain stiff plates.
The respiratory system (also respiratory apparatus, ventilatory system) is a biological system consisting of specific organs and structures used for gas exchange in animals and plants. The anatomy and physiology that make this happen varies greatly, depending on the size of the organism, the environment in which it lives and its evolutionary ...
Alveoli and their capillary networks 3D medical illustration showing different terminating ends of bronchioles. Alveoli consist of two types of alveolar cell and an alveolar macrophage. The two types of cell are known as type I and type II cells [32] (also known as pneumocytes). [3] Types I and II make up the walls and alveolar septa.
Alveolus (/ æ l ˈ v iː ə l ə s /; pl. alveoli, adj. alveolar) is a general anatomical term for a concave cavity or pit. Uses in anatomy and zoology
A pulmonary alveolus (pl. alveoli; from Latin alveolus 'little cavity'), also called an air sac or air space, is one of millions of hollow, distensible cup-shaped cavities in the lungs where pulmonary gas exchange takes place. [1] Oxygen is exchanged for carbon dioxide at the blood–air barrier between the alveolar air and the pulmonary ...
The alveoli are tiny air sacs in the lungs where gas exchange takes place. The mean number of alveoli in a human lung is 480 million. [11] When the diaphragm contracts, a negative pressure is generated in the thorax and air rushes in to fill the cavity. When that happens, these sacs fill with air, making the lung expand.
In very small animals, plants and bacteria, simple diffusion of gaseous metabolites is sufficient for respiratory function and no special adaptations are found to aid respiration. Passive diffusion or active transport are also sufficient mechanisms for many larger aquatic animals such as many worms, jellyfish, sponges, bryozoans and similar ...
The process of breathing does not fill the alveoli with atmospheric air during each inhalation (about 350 ml per breath), but the inhaled air is carefully diluted and thoroughly mixed with a large volume of gas (about 2.5 liters in adult humans) known as the functional residual capacity which remains in the lungs after each exhalation, and ...