enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    In machine learning, a neural network (also artificial neural network or neural net, abbreviated ANN or NN) is a model inspired by the structure and function of biological neural networks in animal brains. [1] [2] An ANN consists of connected units or nodes called artificial neurons, which loosely model the neurons in the brain. Artificial ...

  3. Neural network - Wikipedia

    en.wikipedia.org/wiki/Neural_network

    A neural network is a group of interconnected units called neurons that send signals to one another. Neurons can be either biological cells or mathematical models . While individual neurons are simple, many of them together in a network can perform complex tasks.

  4. Types of artificial neural networks - Wikipedia

    en.wikipedia.org/wiki/Types_of_artificial_neural...

    Some artificial neural networks are adaptive systems and are used for example to model populations and environments, which constantly change. Neural networks can be hardware- (neurons are represented by physical components) or software-based (computer models), and can use a variety of topologies and learning algorithms.

  5. diagrams.net - Wikipedia

    en.wikipedia.org/wiki/Diagrams.net

    diagrams.net (previously draw.io [2] [3]) is a cross-platform graph drawing software application developed in HTML5 and JavaScript. [4] Its interface can be used to create diagrams such as flowcharts , wireframes , UML diagrams, organizational charts , and network diagrams .

  6. Graph neural network - Wikipedia

    en.wikipedia.org/wiki/Graph_neural_network

    Graph attention network is a combination of a GNN and an attention layer. The implementation of attention layer in graphical neural networks helps provide attention or focus to the important information from the data instead of focusing on the whole data. A multi-head GAT layer can be expressed as follows:

  7. Convolutional neural network - Wikipedia

    en.wikipedia.org/wiki/Convolutional_neural_network

    A convolutional neural network (CNN) is a regularized type of feedforward neural network that learns features by itself via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. [1]

  8. Recurrent neural network - Wikipedia

    en.wikipedia.org/wiki/Recurrent_neural_network

    Fully recurrent neural networks (FRNN) connect the outputs of all neurons to the inputs of all neurons. In other words, it is a fully connected network. This is the most general neural network topology, because all other topologies can be represented by setting some connection weights to zero to simulate the lack of connections between those ...

  9. Self-organizing map - Wikipedia

    en.wikipedia.org/wiki/Self-organizing_map

    This can make high-dimensional data easier to visualize and analyze. An SOM is a type of artificial neural network but is trained using competitive learning rather than the error-correction learning (e.g., backpropagation with gradient descent) used by other artificial neural networks.