enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    The equation for universal gravitation thus takes the form: =, where F is the gravitational force acting between two objects, m 1 and m 2 are the masses of the objects, r is the distance between the centers of their masses, and G is the gravitational constant.

  3. g-force - Wikipedia

    en.wikipedia.org/wiki/G-force

    If there are no other external forces than gravity, the g-force in a rocket is the thrust per unit mass. Its magnitude is equal to the thrust-to-weight ratio times g, and to the consumption of delta-v per unit time. In the case of a shock, e.g., a collision, the g-force can be very large during a short time.

  4. Gravity - Wikipedia

    en.wikipedia.org/wiki/Gravity

    In physics, gravity (from Latin gravitas 'weight' [1]) is a fundamental interaction primarily observed as a mutual attraction between all things that have mass.Gravity is, by far, the weakest of the four fundamental interactions, approximately 10 38 times weaker than the strong interaction, 10 36 times weaker than the electromagnetic force, and 10 29 times weaker than the weak interaction.

  5. List of equations in gravitation - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    A common misconception occurs between centre of mass and centre of gravity.They are defined in similar ways but are not exactly the same quantity. Centre of mass is the mathematical description of placing all the mass in the region considered to one position, centre of gravity is a real physical quantity, the point of a body where the gravitational force acts.

  6. Fundamental interaction - Wikipedia

    en.wikipedia.org/wiki/Fundamental_interaction

    According to the present understanding, there are four fundamental interactions or forces: gravitation, electromagnetism, the weak interaction, and the strong interaction. Their magnitude and behaviour vary greatly, as described in the table below. Modern physics attempts to explain every observed physical phenomenon by these fundamental ...

  7. Gravitational field - Wikipedia

    en.wikipedia.org/wiki/Gravitational_field

    In classical mechanics, a gravitational field is a physical quantity. [5] A gravitational field can be defined using Newton's law of universal gravitation.Determined in this way, the gravitational field g around a single particle of mass M is a vector field consisting at every point of a vector pointing directly towards the particle.

  8. Orders of magnitude (force) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude_(force)

    Examples of force. The following list shows different orders of magnitude of force. Since weight under gravity is a force, several of these examples refer to the weight of various objects. Unless otherwise stated, these are weights under average Earth gravity at sea level.

  9. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    In Einstein's theory of general relativity, gravitation is an attribute of curved spacetime instead of being due to a force propagated between bodies. In Einstein's theory, masses distort spacetime in their vicinity, and other particles move in trajectories determined by the geometry of spacetime. The gravitational force is a fictitious force.