enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. ID3 algorithm - Wikipedia

    en.wikipedia.org/wiki/ID3_algorithm

    In decision tree learning, ID3 (Iterative Dichotomiser 3) is an algorithm invented by Ross Quinlan [1] used to generate a decision tree from a dataset. ID3 is the precursor to the C4.5 algorithm, and is typically used in the machine learning and natural language processing domains.

  3. Rule induction - Wikipedia

    en.wikipedia.org/wiki/Rule_induction

    Data mining in general and rule induction in detail are trying to create algorithms without human programming but with analyzing existing data structures. [1]: 415- In the easiest case, a rule is expressed with “if-then statements” and was created with the ID3 algorithm for decision tree learning.

  4. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    Decision tree learning is a supervised learning approach used in statistics, data mining and machine learning. In this formalism, a classification or regression decision tree is used as a predictive model to draw conclusions about a set of observations.

  5. Decision tree - Wikipedia

    en.wikipedia.org/wiki/Decision_tree

    A deeper tree can influence the runtime in a negative way. If a certain classification algorithm is being used, then a deeper tree could mean the runtime of this classification algorithm is significantly slower. There is also the possibility that the actual algorithm building the decision tree will get significantly slower as the tree gets deeper.

  6. C4.5 algorithm - Wikipedia

    en.wikipedia.org/wiki/C4.5_algorithm

    This algorithm has a few base cases. All the samples in the list belong to the same class. When this happens, it simply creates a leaf node for the decision tree saying to choose that class. None of the features provide any information gain. In this case, C4.5 creates a decision node higher up the tree using the expected value of the class.

  7. Information gain (decision tree) - Wikipedia

    en.wikipedia.org/wiki/Information_gain_(decision...

    The feature with the optimal split i.e., the highest value of information gain at a node of a decision tree is used as the feature for splitting the node. The concept of information gain function falls under the C4.5 algorithm for generating the decision trees and selecting the optimal split for a decision tree node. [1] Some of its advantages ...

  8. Ross Quinlan - Wikipedia

    en.wikipedia.org/wiki/Ross_Quinlan

    John Ross Quinlan is a computer science researcher in data mining and decision theory. He has contributed extensively to the development of decision tree algorithms, including inventing the canonical C4.5 and ID3 algorithms. He also contributed to early ILP literature with First Order Inductive Learner (FOIL).

  9. Decision tree pruning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_pruning

    Pre-pruning procedures prevent a complete induction of the training set by replacing a stop criterion in the induction algorithm (e.g. max. Tree depth or information gain (Attr)> minGain). Pre-pruning methods are considered to be more efficient because they do not induce an entire set, but rather trees remain small from the start.

  1. Related searches explain decision tree induction algorithm in machine learning python book

    decision tree examplesdecision tree drawing
    decision tree diagramid3 algorithm
    wikipedia decision treedecision tree ppt