Ads
related to: graphing practice questions pdf
Search results
Results from the WOW.Com Content Network
The function f is injective if and only if each horizontal line intersects the graph at most once. In this case the graph is said to pass the horizontal line test. If any horizontal line intersects the graph more than once, the function fails the horizontal line test and is not injective. [2]
The College Board stated that a calculator "may be useful or necessary" for about 55-60% of the questions on the test. The College Board also encouraged the use of a graphing calculator over a scientific calculator, [7] saying that the test was "developed with the expectation that most students are using graphing calculators."
Since such graphs have a unique embedding (up to flipping and the choice of the external face), the next bigger graph, if still planar, must be a refinement of the former graph. This allows to reduce the planarity test to just testing for each step whether the next added edge has both ends in the external face of the current embedding.
Shortest path (A, C, E, D, F), blue, between vertices A and F in the weighted directed graph. In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.
A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).
At the same time, isomorphism for many special classes of graphs can be solved in polynomial time, and in practice graph isomorphism can often be solved efficiently. [ 3 ] [ 4 ] This problem is a special case of the subgraph isomorphism problem , [ 5 ] which asks whether a given graph G contains a subgraph that is isomorphic to another given ...
A connected graph has an Euler cycle if and only if every vertex has an even number of incident edges. The term Eulerian graph has two common meanings in graph theory. One meaning is a graph with an Eulerian circuit, and the other is a graph with every vertex of even degree. These definitions coincide for connected graphs. [2]
For a simple graph with vertex set U = {u 1, …, u n}, the adjacency matrix is a square n × n matrix A such that its element A ij is 1 when there is an edge from vertex u i to vertex u j, and 0 when there is no edge. [1]
Ads
related to: graphing practice questions pdf