enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Validity (statistics) - Wikipedia

    en.wikipedia.org/wiki/Validity_(statistics)

    Statistical conclusion validity is the degree to which conclusions about the relationship among variables based on the data are correct or 'reasonable'. This began as being solely about whether the statistical conclusion about the relationship of the variables was correct, but now there is a movement towards moving to 'reasonable' conclusions ...

  3. Statistical model validation - Wikipedia

    en.wikipedia.org/wiki/Statistical_model_validation

    In statistics, model validation is the task of evaluating whether a chosen statistical model is appropriate or not. Oftentimes in statistical inference, inferences from models that appear to fit their data may be flukes, resulting in a misunderstanding by researchers of the actual relevance of their model.

  4. Sensitivity and specificity - Wikipedia

    en.wikipedia.org/wiki/Sensitivity_and_specificity

    In medicine and statistics, sensitivity and specificity mathematically describe the accuracy of a test that reports the presence or absence of a medical condition. If individuals who have the condition are considered "positive" and those who do not are considered "negative", then sensitivity is a measure of how well a test can identify true ...

  5. Statistical model specification - Wikipedia

    en.wikipedia.org/wiki/Statistical_model...

    One approach is to start with a model in general form that relies on a theoretical understanding of the data-generating process. Then the model can be fit to the data and checked for the various sources of misspecification, in a task called statistical model validation. Theoretical understanding can then guide the modification of the model in ...

  6. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  7. Verification and validation - Wikipedia

    en.wikipedia.org/wiki/Verification_and_validation

    Verification is intended to check that a product, service, or system meets a set of design specifications. [6] [7] In the development phase, verification procedures involve performing special tests to model or simulate a portion, or the entirety, of a product, service, or system, then performing a review or analysis of the modeling results.

  8. Regression validation - Wikipedia

    en.wikipedia.org/wiki/Regression_validation

    In statistics, regression validation is the process of deciding whether the numerical results quantifying hypothesized relationships between variables, obtained from regression analysis, are acceptable as descriptions of the data. The validation process can involve analyzing the goodness of fit of the regression, analyzing whether the ...

  9. Evaluation of binary classifiers - Wikipedia

    en.wikipedia.org/wiki/Evaluation_of_binary...

    The fundamental prevalence-independent statistics are sensitivity and specificity.. Sensitivity or True Positive Rate (TPR), also known as recall, is the proportion of people that tested positive and are positive (True Positive, TP) of all the people that actually are positive (Condition Positive, CP = TP + FN).