enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Polynomial long division - Wikipedia

    en.wikipedia.org/wiki/Polynomial_long_division

    If one root r of a polynomial P(x) of degree n is known then polynomial long division can be used to factor P(x) into the form (x − r)Q(x) where Q(x) is a polynomial of degree n − 1. Q ( x ) is simply the quotient obtained from the division process; since r is known to be a root of P ( x ), it is known that the remainder must be zero.

  3. Polynomial greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Polynomial_greatest_common...

    A polynomial in n variables may be considered as a univariate polynomial over the ring of polynomials in (n − 1) variables. Thus a recursion on the number of variables shows that if GCDs exist and may be computed in R , then they exist and may be computed in every multivariate polynomial ring over R .

  4. Ruffini's rule - Wikipedia

    en.wikipedia.org/wiki/Ruffini's_rule

    Ruffini's rule can be used when one needs the quotient of a polynomial P by a binomial of the form . (When one needs only the remainder, the polynomial remainder theorem provides a simpler method.) A typical example, where one needs the quotient, is the factorization of a polynomial p ( x ) {\displaystyle p(x)} for which one knows a root r :

  5. Gauss's lemma (polynomials) - Wikipedia

    en.wikipedia.org/wiki/Gauss's_lemma_(polynomials)

    (A polynomial with integer coefficients is primitive if it has 1 as a greatest common divisor of its coefficients. [note 2]) A corollary of Gauss's lemma, sometimes also called Gauss's lemma, is that a primitive polynomial is irreducible over the integers if and only if it is irreducible over the rational numbers. More generally, a primitive ...

  6. Monomial order - Wikipedia

    en.wikipedia.org/wiki/Monomial_order

    The leading term of a polynomial is thus the term of the largest monomial (for the chosen monomial ordering). Concretely, let R be any ring of polynomials. Then the set M of the (monic) monomials in R is a basis of R , considered as a vector space over the field of the coefficients.

  7. Polynomial root-finding - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding

    The oldest method of finding all roots is to start by finding a single root. When a root r has been found, it can be removed from the polynomial by dividing out the binomial x – r. The resulting polynomial contains the remaining roots, which can be found by iterating on this process.

  8. Division (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Division_(mathematics)

    Dividing integers in a computer program requires special care. Some programming languages treat integer division as in case 5 above, so the answer is an integer. Other languages, such as MATLAB and every computer algebra system return a rational number as the answer, as in case 3 above. These languages also provide functions to get the results ...

  9. Monomial - Wikipedia

    en.wikipedia.org/wiki/Monomial

    In mathematics, a monomial is, roughly speaking, a polynomial which has only one term.Two definitions of a monomial may be encountered: A monomial, also called a power product or primitive monomial, [1] is a product of powers of variables with nonnegative integer exponents, or, in other words, a product of variables, possibly with repetitions. [2]