Search results
Results from the WOW.Com Content Network
The major determinant of vascular resistance is small arteriolar (known as resistance arterioles) tone. These vessels are from 450 μm down to 100 μm in diameter (as a comparison, the diameter of a capillary is about 5 to 10 μm). Another determinant of vascular resistance is the pre-capillary arterioles. These arterioles are less than 100 μm ...
Vascular resistance is the amount of force circulating blood must overcome in order to allow perfusion of body tissues. Narrow vessels create more vascular resistance, while dilated vessels decrease vascular resistance. Vasodilation acts to increase cardiac output by decreasing afterload, −one of the four determinants of cardiac output. [4]
The process is the opposite of vasodilation, the widening of blood vessels. The process is particularly important in controlling hemorrhage and reducing acute blood loss. When blood vessels constrict, the flow of blood is restricted or decreased, thus retaining body heat or increasing vascular resistance.
Vasodilation and vasoconstriction are complex phenomena; they are functions not merely of the fluid mechanics of pressure and tissue elasticity but also of active homeostatic regulation with hormones and cell signaling, in which the body produces endogenous vasodilators and vasoconstrictors to modify its vessels' compliance.
The pressure drop of the arterioles is the product of flow rate and resistance: ∆P=Q xresistance. The high resistance observed in the arterioles, which factor largely in the ∆P is a result of a smaller radius of about 30 μm. [24] The smaller the radius of a tube, the larger the resistance to fluid flow.
Vascular resistance occurs when the vessels away from the heart oppose the flow of blood. Resistance is an accumulation of three different factors: blood viscosity, blood vessel length and vessel radius. [30] Blood viscosity is the thickness of the blood and its resistance to flow as a result of the different components of the blood.
In response to the blood flow interruption, a temporary compensatory vasodilation occurs as soon as blood flow has resumed, before returning to normal. This response occurs because vasodilatory substances, like adenosine, are released in response to the blood flow interruption, meaning that when blood flow resumes it occurs in a wider blood ...
Venous return curves showing the normal curve when the mean systemic filling pressure (Psf) is 7 mm Hg and the effect of altering the Psf to 3.5, 7, or 14 mm Hg. Hemodynamically, venous return (VR) to the heart from the venous vascular beds is determined by a pressure gradient (venous pressure - right atrial pressure) and venous resistance (RV ...