Search results
Results from the WOW.Com Content Network
In data analysis, cosine similarity is a measure of similarity between two non-zero vectors defined in an inner product space. Cosine similarity is the cosine of the angle between the vectors; that is, it is the dot product of the vectors divided by the product of their lengths. It follows that the cosine similarity does not depend on the ...
Though not as predominant as BERTScore, sentence embeddings are commonly used for sentence similarity evaluation which sees common use for the task of optimizing a Large language model's generation parameters is often performed via comparing candidate sentences against reference sentences. By using the cosine-similarity of the sentence ...
CL-ESA exploits a document-aligned multilingual reference collection (e.g., again, Wikipedia) to represent a document as a language-independent concept vector. The relatedness of two documents in different languages is assessed by the cosine similarity between the corresponding vector representations.
In particular, words which appear in similar contexts are mapped to vectors which are nearby as measured by cosine similarity. This indicates the level of semantic similarity between the words, so for example the vectors for walk and ran are nearby, as are those for "but" and "however", and "Berlin" and "Germany".
Find relations between terms (synonymy and polysemy). Given a query of terms, translate it into the low-dimensional space, and find matching documents (information retrieval). Find the best similarity between small groups of terms, in a semantic way (i.e. in a context of a knowledge corpus), as for example in multi choice questions MCQ ...
In statistics and related fields, a similarity measure or similarity function or similarity metric is a real-valued function that quantifies the similarity between two objects. Although no single definition of a similarity exists, usually such measures are in some sense the inverse of distance metrics : they take on large values for similar ...
Distributional semantics [1] is a research area that develops and studies theories and methods for quantifying and categorizing semantic similarities between linguistic items based on their distributional properties in large samples of language data.
BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine's output and that of a human: "the closer a machine translation is to a professional human translation, the better it is" – this is the central idea behind BLEU.