Search results
Results from the WOW.Com Content Network
Toyesh Prakash Sharma, Etisha Sharma, "Putting Forward Another Generalization Of The Class Of Exponential Integrals And Their Applications.," International Journal of Scientific Research in Mathematical and Statistical Sciences, Vol.10, Issue.2, pp.1-8, 2023.
A different technique, which goes back to Laplace (1812), [3] is the following. Let = =. Since the limits on s as y → ±∞ depend on the sign of x, it simplifies the calculation to use the fact that e −x 2 is an even function, and, therefore, the integral over all real numbers is just twice the integral from zero to infinity.
Plot of the exponential integral function E n(z) with n=2 in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D In mathematics, the exponential integral Ei is a special function on the complex plane .
An even larger, multivolume table is the Integrals and Series by Prudnikov, Brychkov, and Marichev (with volumes 1–3 listing integrals and series of elementary and special functions, volume 4–5 are tables of Laplace transforms).
Integrals involving R = √ ax 2 + bx + c. Assume (ax 2 + bx + c) cannot be reduced to the following expression (px + q) 2 for some p and q.
The one-dimensional integrals can be generalized to multiple dimensions. [2] (+) = ()Here A is a real positive definite symmetric matrix.. This integral is performed by diagonalization of A with an orthogonal transformation = = where D is a diagonal matrix and O is an orthogonal matrix.
Many of the following antiderivatives have a term of the form ln |ax + b|.Because this is undefined when x = −b / a, the most general form of the antiderivative replaces the constant of integration with a locally constant function. [1]
In mathematics, the definite integral ()is the area of the region in the xy-plane bounded by the graph of f, the x-axis, and the lines x = a and x = b, such that area above the x-axis adds to the total, and that below the x-axis subtracts from the total.