enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    That is, the Taylor series diverges at x if the distance between x and b is larger than the radius of convergence. The Taylor series can be used to calculate the value of an entire function at every point, if the value of the function, and of all of its derivatives, are known at a single point. Uses of the Taylor series for analytic functions ...

  3. Arctangent series - Wikipedia

    en.wikipedia.org/wiki/Arctangent_series

    Mādhava's work was unknown in Europe, and the arctangent series was independently rediscovered by James Gregory in 1671 and by Gottfried Leibniz in 1673. [2] In recent literature the arctangent series is sometimes called the Mādhava–Gregory series to recognize Mādhava's priority (see also Mādhava series). [3]

  4. Radius of convergence - Wikipedia

    en.wikipedia.org/wiki/Radius_of_convergence

    Two cases arise: The first case is theoretical: when you know all the coefficients then you take certain limits and find the precise radius of convergence.; The second case is practical: when you construct a power series solution of a difficult problem you typically will only know a finite number of terms in a power series, anywhere from a couple of terms to a hundred terms.

  5. Taylor's theorem - Wikipedia

    en.wikipedia.org/wiki/Taylor's_theorem

    The Taylor series of f converges uniformly to the zero function T f (x) = 0, which is analytic with all coefficients equal to zero. The function f is unequal to this Taylor series, and hence non-analytic. For any order k ∈ N and radius r > 0 there exists M k,r > 0 satisfying the remainder bound above.

  6. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    The most direct method is to truncate the Maclaurin series for each of the trigonometric functions. Depending on the order of the approximation , cos ⁡ θ {\displaystyle \textstyle \cos \theta } is approximated as either 1 {\displaystyle 1} or as 1 − 1 2 θ 2 {\textstyle 1-{\frac {1}{2}}\theta ^{2}} .

  7. Machin-like formula - Wikipedia

    en.wikipedia.org/wiki/Machin-like_formula

    Let be the amount of time spent on each digit (for each term in the Taylor series). The Taylor series will converge when: (()) = Thus: = ⁡ ⁡ For the first term in the Taylor series, all digits must be processed. In the last term of the Taylor series, however, there's only one digit remaining to be processed.

  8. Actors Who Keep Appearing in Taylor Sheridan’s TV Universe ...

    www.aol.com/entertainment/actors-keep-appearing...

    As Taylor Sheridan's TV universe continues to grow, the prolific producer has collaborated with several actors on more than one of his shows. Sheridan got his start as an actor with roles on ...

  9. Binomial series - Wikipedia

    en.wikipedia.org/wiki/Binomial_series

    where the power series on the right-hand side of is expressed in terms of the (generalized) binomial coefficients ():= () (+)!.Note that if α is a nonnegative integer n then the x n + 1 term and all later terms in the series are 0, since each contains a factor of (n − n).