enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lanthanide contraction - Wikipedia

    en.wikipedia.org/wiki/Lanthanide_contraction

    The lanthanide contraction is the greater-than-expected decrease in atomic radii and ionic radii of the elements in the lanthanide series, from left to right. It is caused by the poor shielding effect of nuclear charge by the 4f electrons along with the expected periodic trend of increasing electronegativity and nuclear charge on moving from left to right.

  3. Lanthanide - Wikipedia

    en.wikipedia.org/wiki/Lanthanide

    All of the lanthanides form Ln 2 Q 3 (Q= S, Se, Te). [18] The sesquisulfides can be produced by reaction of the elements or (with the exception of Eu 2 S 3) sulfidizing the oxide (Ln 2 O 3) with H 2 S. [18] The sesquisulfides, Ln 2 S 3 generally lose sulfur when heated and can form a range of compositions between Ln 2 S 3 and Ln 3 S 4.

  4. Inorganic ions - Wikipedia

    en.wikipedia.org/wiki/Inorganic_ions

    PO 3− 4 – adenosine triphosphate (ATP) is a common molecule which stores energy in an accessible form. Bone is calcium phosphate. Fe 2+ /Fe 3+ – as found in haemoglobin, the main oxygen carrying molecule has a central iron ion. NO − 3source of nitrogen in plants for the synthesis of proteins.

  5. Photosynthetic reaction centre - Wikipedia

    en.wikipedia.org/wiki/Photosynthetic_reaction_centre

    Reaction centers are present in all green plants, algae, and many bacteria.A variety in light-harvesting complexes exist across the photosynthetic species. Green plants and algae have two different types of reaction centers that are part of larger supercomplexes known as P700 in Photosystem I and P680 in Photosystem II.

  6. Photophosphorylation - Wikipedia

    en.wikipedia.org/wiki/Photophosphorylation

    In cyclic photophosphorylation, the high-energy electron released from P700, a pigment in a complex called photosystem I, flows in a cyclic pathway. The electron starts in photosystem I, passes from the primary electron acceptor to ferredoxin and then to plastoquinone , next to cytochrome b 6 f (a similar complex to that found in mitochondria ...

  7. Chemiosmosis - Wikipedia

    en.wikipedia.org/wiki/Chemiosmosis

    An important example is the formation of adenosine triphosphate (ATP) by the movement of hydrogen ions (H +) across a membrane during cellular respiration or photosynthesis. An ion gradient has potential energy and can be used to power chemical reactions when the ions pass through a channel (red).

  8. Photosystem I - Wikipedia

    en.wikipedia.org/wiki/Photosystem_I

    Ultimately, the electrons that are transferred by Photosystem I are used to produce the moderate-energy hydrogen carrier NADPH. [2] The photon energy absorbed by Photosystem I also produces a proton-motive force that is used to generate ATP. PSI is composed of more than 110 cofactors, significantly more than Photosystem II. [3]

  9. Oxidative phosphorylation - Wikipedia

    en.wikipedia.org/wiki/Oxidative_phosphorylation

    The energy transferred by electrons flowing through this electron transport chain is used to transport protons across the inner mitochondrial membrane, in a process called electron transport. This generates potential energy in the form of a pH gradient and the resulting electrical potential across this membrane.