enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stochastic approximation - Wikipedia

    en.wikipedia.org/wiki/Stochastic_approximation

    Stochastic approximation methods are a family of iterative methods typically used for root-finding problems or for optimization problems. The recursive update rules of stochastic approximation methods can be used, among other things, for solving linear systems when the collected data is corrupted by noise, or for approximating extreme values of functions which cannot be computed directly, but ...

  3. Stochastic optimization - Wikipedia

    en.wikipedia.org/wiki/Stochastic_optimization

    Indeed, this randomization principle is known to be a simple and effective way to obtain algorithms with almost certain good performance uniformly across many data sets, for many sorts of problems. Stochastic optimization methods of this kind include: simulated annealing by S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi (1983) [10] quantum annealing

  4. Stochastic programming - Wikipedia

    en.wikipedia.org/wiki/Stochastic_programming

    Then the expectation in the first-stage problem's objective function can be written as the summation: [(,)] = = (,) and, moreover, the two-stage problem can be formulated as one large linear programming problem (this is called the deterministic equivalent of the original problem, see section § Deterministic equivalent of a stochastic problem).

  5. Stochastic simulation - Wikipedia

    en.wikipedia.org/wiki/Stochastic_simulation

    If we necessarily need to answer all the questions, or if we don't know what purposes is the model going to be used for, it is convenient to apply combined continuous/discrete methodology. [20] Similar techniques can change from a discrete, stochastic description to a deterministic, continuum description in a time-and space dependent manner. [21]

  6. Euler–Maruyama method - Wikipedia

    en.wikipedia.org/wiki/Euler–Maruyama_method

    In Itô calculus, the Euler–Maruyama method (also simply called the Euler method) is a method for the approximate numerical solution of a stochastic differential equation (SDE). It is an extension of the Euler method for ordinary differential equations to stochastic differential equations named after Leonhard Euler and Gisiro Maruyama. The ...

  7. Simultaneous perturbation stochastic approximation - Wikipedia

    en.wikipedia.org/wiki/Simultaneous_perturbation...

    Simultaneous perturbation stochastic approximation (SPSA) is an algorithmic method for optimizing systems with multiple unknown parameters. It is a type of stochastic approximation algorithm. As an optimization method, it is appropriately suited to large-scale population models, adaptive modeling, simulation optimization , and atmospheric ...

  8. Stochastic processes and boundary value problems - Wikipedia

    en.wikipedia.org/wiki/Stochastic_processes_and...

    The idea of the stochastic method for solving this problem is as follows. First, one finds an Itō diffusion X {\displaystyle X} whose infinitesimal generator A {\displaystyle A} coincides with L {\displaystyle L} on compactly-supported C 2 {\displaystyle C^{2}} functions f : R n → R {\displaystyle f:\mathbb {R} ^{n}\rightarrow \mathbb {R} } .

  9. Infinitesimal generator (stochastic processes) - Wikipedia

    en.wikipedia.org/wiki/Infinitesimal_generator...

    In mathematics — specifically, in stochastic analysis — the infinitesimal generator of a Feller process (i.e. a continuous-time Markov process satisfying certain regularity conditions) is a Fourier multiplier operator [1] that encodes a great deal of information about the process.