enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dini's theorem - Wikipedia

    en.wikipedia.org/wiki/Dini's_theorem

    The limit function must be continuous, since a uniform limit of continuous functions is necessarily continuous. The continuity of the limit function cannot be inferred from the other hypothesis (consider x n {\displaystyle x^{n}} in [ 0 , 1 ] {\displaystyle [0,1]} .)

  3. List of limits - Wikipedia

    en.wikipedia.org/wiki/List_of_limits

    1.4 Limits involving derivatives or infinitesimal changes. 1.5 Inequalities. 2 Polynomials and functions of the form x a. ... [1] [3] In general, if g(x) ...

  4. Limit (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Limit_(mathematics)

    Augustin-Louis Cauchy in 1821, [6] followed by Karl Weierstrass, formalized the definition of the limit of a function which became known as the (ε, δ)-definition of limit. The modern notation of placing the arrow below the limit symbol is due to G. H. Hardy , who introduced it in his book A Course of Pure Mathematics in 1908.

  5. Dirac delta function - Wikipedia

    en.wikipedia.org/wiki/Dirac_delta_function

    In mathematical analysis, the Dirac delta function (or δ distribution), also known as the unit impulse, [1] is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one. [2] [3] [4] Thus it can be represented heuristically as

  6. Limit inferior and limit superior - Wikipedia

    en.wikipedia.org/wiki/Limit_inferior_and_limit...

    In mathematical analysis, limit superior and limit inferior are important tools for studying sequences of real numbers.Since the supremum and infimum of an unbounded set of real numbers may not exist (the reals are not a complete lattice), it is convenient to consider sequences in the affinely extended real number system: we add the positive and negative infinities to the real line to give the ...

  7. Limit of a function - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_function

    respectively. If these limits exist at p and are equal there, then this can be referred to as the limit of f(x) at p. [7] If the one-sided limits exist at p, but are unequal, then there is no limit at p (i.e., the limit at p does not exist). If either one-sided limit does not exist at p, then the limit at p also does not exist.

  8. One-sided limit - Wikipedia

    en.wikipedia.org/wiki/One-sided_limit

    The function () = + ⁡ (), where ⁡ denotes the sign function, has a left limit of , a right limit of +, and a function value of at the point =. In calculus, a one-sided limit refers to either one of the two limits of a function of a real variable as approaches a specified point either from the left or from the right.

  9. Thermodynamic limit - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_limit

    The thermodynamic limit is essentially a consequence of the central limit theorem of probability theory. The internal energy of a gas of N molecules is the sum of order N contributions, each of which is approximately independent, and so the central limit theorem predicts that the ratio of the size of the fluctuations to the mean is of order 1/N 1/2.