Search results
Results from the WOW.Com Content Network
The lanthanide contraction is the greater-than-expected decrease in atomic radii and ionic radii of the elements in the lanthanide series, from left to right. It is caused by the poor shielding effect of nuclear charge by the 4f electrons along with the expected periodic trend of increasing electronegativity and nuclear charge on moving from left to right.
All of the lanthanides form Ln 2 Q 3 (Q= S, Se, Te). [18] The sesquisulfides can be produced by reaction of the elements or (with the exception of Eu 2 S 3) sulfidizing the oxide (Ln 2 O 3) with H 2 S. [18] The sesquisulfides, Ln 2 S 3 generally lose sulfur when heated and can form a range of compositions between Ln 2 S 3 and Ln 3 S 4.
The size of Ln 3+ ions regularly decreases with atomic number. According to Fajans' rules , decrease in size of Ln 3+ ions increases the covalent character and decreases the basic character between Ln 3+ and OH − ions in Ln(OH) 3 , to the point that Yb(OH) 3 and Lu(OH) 3 can dissolve with difficulty in hot concentrated NaOH.
In condensed-matter physics, channelling (or channeling) is the process that constrains the path of a charged particle in a crystalline solid. [1] [2] [3]Many physical phenomena can occur when a charged particle is incident upon a solid target, e.g., elastic scattering, inelastic energy-loss processes, secondary-electron emission, electromagnetic radiation, nuclear reactions, etc.
A molecule, called adenosine triphosphate (ATP) which is produced by an intracellular structure called a mitochondrion, is then used, as a source of energy, to help move the myosin head, carrying the actin. As a result, the actin slides across the myosin filament shortening the muscle. This is called a power stroke.
This is the energy per mole necessary to remove electrons from gaseous atoms or atomic ions. The first molar ionization energy applies to the neutral atoms. The second, third, etc., molar ionization energy applies to the further removal of an electron from a singly, doubly, etc., charged ion.
In atomic physics, the effective nuclear charge of an electron in a multi-electron atom or ion is the number of elementary charges an electron experiences by the nucleus. It is denoted by Z eff . The term "effective" is used because the shielding effect of negatively charged electrons prevent higher energy electrons from experiencing the full ...
The Born–Landé equation is a means of calculating the lattice energy of a crystalline ionic compound.In 1918 [1] Max Born and Alfred Landé proposed that the lattice energy could be derived from the electrostatic potential of the ionic lattice and a repulsive potential energy term.