Search results
Results from the WOW.Com Content Network
All other gene segments between V and D segments are now deleted from the cell's genome. Primary transcript (unspliced RNA) is generated containing the VDJ region of the heavy chain and both the constant mu and delta chains (C μ and C δ). (i.e. the primary transcript contains the segments: V-D-J-C μ-C δ). The primary RNA is processed to add ...
The rearrangements of heavy-chains are different from the light chains because DNA undergoes rearrangements of V-D-J gene segments in the heavy chains. These reorganizations of gene segments produce gene sequence from 5 prime to 3 prime ends such as a short leader exon, an intron, a joined VDJ segment, a second intron and several gene segments.
Recombination signal sequences guide the enzyme complex to the V, D, and J gene segments that will undergo recombination during the formation of the heavy and light-chain variable regions in T-cell receptors and immunoglobulin molecules. [1]
The immunoglobulin heavy chain (IgH) is the large polypeptide subunit of an antibody (immunoglobulin). In human genome, the IgH gene loci are on chromosome 14. A typical antibody is composed of two immunoglobulin (Ig) heavy chains and two Ig light chains. Several different types of heavy chain exist that define the class or isotype of an ...
Mechanism of class-switch recombination that allows isotype switching in activated B cells. Immunoglobulin class switching, also known as isotype switching, isotypic commutation or class-switch recombination (CSR), is a biological mechanism that changes a B cell's production of immunoglobulin from one type to another, such as from the isotype IgM to the isotype IgG. [1]
Current studies have indicated that RAG-1 and RAG-2 must work in a synergistic manner to activate VDJ recombination. RAG-1 was shown to inefficiently induce recombination activity of the VDJ genes when isolated and transfected into fibroblast samples. When RAG-1 was cotransfected with RAG-2, recombination frequency increased by a 1000-fold. [3]
Complementarity-determining regions (CDRs) are polypeptide segments of the variable chains in immunoglobulins (antibodies) and T cell receptors, generated by B-cells and T-cells respectively. CDRs are where these molecules bind to their specific antigen and their structure/sequence determines the binding activity of the respective antibody.
A prime example of such a use of genetic recombination is gene targeting, which can be used to add, delete or otherwise change an organism's genes. This technique is important to biomedical researchers as it allows them to study the effects of specific genes.