Search results
Results from the WOW.Com Content Network
A real-time polymerase chain reaction (real-time PCR, or qPCR when used quantitatively) is a laboratory technique of molecular biology based on the polymerase chain reaction (PCR). It monitors the amplification of a targeted DNA molecule during the PCR (i.e., in real time), not at its end, as in conventional PCR. Real-time PCR can be used ...
Instead an active propagating radical interchanges its role with a latent radical in a dormant complex. The activation of one polymer chain means the deactivation of another polymer chain. If the exchange process is much faster than the polymerisation rate (k p), effectively all polymer chains grow at the same rate. Because the large polymer ...
Living polymerization: A chain polymerization from which chain transfer and chain termination are absent.. Note: In many cases, the rate of chain initiation is fast compared with the rate of chain propagation, so that the number of kinetic-chain carriers is essentially constant throughout the polymerization.
Chain-growth polymerization or chain-growth polymerisation is a polymerization technique where monomer molecules add onto the active site on a growing polymer chain one at a time. [1] There are a limited number of these active sites at any moment during the polymerization which gives this method its key characteristics.
Reptation theory describes the effect of polymer chain entanglements on the relationship between molecular mass and chain relaxation time. The theory predicts that, in entangled systems, the relaxation time τ is proportional to the cube of molecular mass, M: τ ∝ M 3. The prediction of the theory can be arrived at by a relatively simple ...
An intramolecular cyclization reaction is where the growing polymer chain reacts with a vinyl functional group on its own chain, rather than with another growing chain in the reaction system. In this way the growing polymer chain covalently links to itself in a fashion similar to that of a knot in a piece of string.
The chain growth nature of CTP can also be described without invoking a catalyst-polymer π-complex. If we assume that no π-complex forms and instead every time a monomer was added to a polymer, the polymer becomes more reactive, we would also see chain growth since the largest polymers in the reaction would be the most reactive and would ...
It provides increased control of molecular weight, molecular architecture and polymer composition while maintaining a low polydispersity (1.05-1.2). The halogen remaining at the end of the polymer chain after polymerization allows for facile post-polymerization chain-end modification into different reactive functional groups.