Search results
Results from the WOW.Com Content Network
In mathematics, the method of equating the coefficients is a way of solving a functional equation of two expressions such as polynomials for a number of unknown parameters. It relies on the fact that two expressions are identical precisely when corresponding coefficients are equal for each different type of term.
3. Between two groups, may mean that the first one is a proper subgroup of the second one. > (greater-than sign) 1. Strict inequality between two numbers; means and is read as "greater than". 2. Commonly used for denoting any strict order. 3. Between two groups, may mean that the second one is a proper subgroup of the first one. ≤ 1.
The term "ordinary" is used in contrast with the term partial differential equation, which may be with respect to more than one independent variable. Linear differential equations, which have solutions that can be added and multiplied by coefficients, are well-defined and understood, and exact closed-form solutions are obtained.
For example, in the polynomial + +, with variables and , the first two terms have the coefficients 7 and −3. The third term 1.5 is the constant coefficient. In the final term, the coefficient is 1 and is not explicitly written. In many scenarios, coefficients are numbers (as is the case for each term of the previous example), although they ...
The coefficient b, often denoted a 0 is called the constant term (sometimes the absolute term in old books [4] [5]). Depending on the context, the term coefficient can be reserved for the a i with i > 0. When dealing with = variables, it is common to use , and instead of indexed variables.
In Riemannian geometry and pseudo-Riemannian geometry, the Gauss–Codazzi equations (also called the Gauss–Codazzi–Weingarten-Mainardi equations or Gauss–Peterson–Codazzi formulas [1]) are fundamental formulas that link together the induced metric and second fundamental form of a submanifold of (or immersion into) a Riemannian or pseudo-Riemannian manifold.
A quadratic equation has at most two solutions. If there is only one solution, one says that it is a double root. If all the coefficients are real numbers, there are either two real solutions, or a single real double root, or two complex solutions that are complex conjugates of each other. A quadratic equation always has two roots, if complex ...
Since two polynomials are equal if and only if their corresponding coefficients are equal, we can equate the coefficients of like terms. In this way, a system of linear equations is obtained which always has a unique solution. This solution can be found using any of the standard methods of linear algebra.