enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Algorithms for calculating variance - Wikipedia

    en.wikipedia.org/wiki/Algorithms_for_calculating...

    This algorithm can easily be adapted to compute the variance of a finite population: simply divide by n instead of n − 1 on the last line.. Because SumSq and (Sum×Sum)/n can be very similar numbers, cancellation can lead to the precision of the result to be much less than the inherent precision of the floating-point arithmetic used to perform the computation.

  3. Variance - Wikipedia

    en.wikipedia.org/wiki/Variance

    Firstly, if the true population mean is unknown, then the sample variance (which uses the sample mean in place of the true mean) is a biased estimator: it underestimates the variance by a factor of (n − 1) / n; correcting this factor, resulting in the sum of squared deviations about the sample mean divided by n-1 instead of n, is called ...

  4. Bachelier model - Wikipedia

    en.wikipedia.org/wiki/Bachelier_model

    The European analytic formula for this model based on a risk neutral argument is derived in Analytic Formula for the European Normal Black Scholes Formula (Kazuhiro Iwasawa, New York University, December 2, 2001). [3] The implied volatility under the Bachelier model can be obtained by an accurate numerical approximation. [4]

  5. Expected value - Wikipedia

    en.wikipedia.org/wiki/Expected_value

    Expected values can also be used to compute the variance, by means of the computational formula for the variance ⁡ = ⁡ [] (⁡ []). A very important application of the expectation value is in the field of quantum mechanics.

  6. Stochastic volatility - Wikipedia

    en.wikipedia.org/wiki/Stochastic_volatility

    Starting from a constant volatility approach, assume that the derivative's underlying asset price follows a standard model for geometric Brownian motion: = + where is the constant drift (i.e. expected return) of the security price , is the constant volatility, and is a standard Wiener process with zero mean and unit rate of variance.

  7. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    It is also the continuous distribution with the maximum entropy for a specified mean and variance. [18] [19] Geary has shown, assuming that the mean and variance are finite, that the normal distribution is the only distribution where the mean and variance calculated from a set of independent draws are independent of each other. [20] [21]

  8. Geometric Brownian motion - Wikipedia

    en.wikipedia.org/wiki/Geometric_Brownian_motion

    Geometric Brownian motion is used to model stock prices in the Black–Scholes model and is the most widely used model of stock price behavior. [4] Some of the arguments for using GBM to model stock prices are: The expected returns of GBM are independent of the value of the process (stock price), which agrees with what we would expect in ...

  9. Weibull distribution - Wikipedia

    en.wikipedia.org/wiki/Weibull_distribution

    In probability theory and statistics, the Weibull distribution / ˈ w aɪ b ʊ l / is a continuous probability distribution.It models a broad range of random variables, largely in the nature of a time to failure or time between events.