Search results
Results from the WOW.Com Content Network
Formally, a parity check matrix H of a linear code C is a generator matrix of the dual code, C ⊥. This means that a codeword c is in C if and only if the matrix-vector product Hc ⊤ = 0 (some authors [1] would write this in an equivalent form, cH ⊤ = 0.) The rows of a parity check matrix are the coefficients of the parity check equations. [2]
As a result, once reduction is complete the parity errors sometimes seen on the 4×4×4 cannot occur on the 5×5×5, or any cube with an odd number of layers. [9] The Yau5 method is named after its proposer, Robert Yau. The method starts by solving the opposite centers (preferably white and yellow), then solving three cross edges (preferably ...
Low-density parity-check code, also known as Gallager code, as the archetype for sparse graph codes; LT code, which is a near-optimal rateless erasure correcting code (Fountain code) m of n codes; Nordstrom-Robinson code, used in Geometry and Group Theory [31] Online code, a near-optimal rateless erasure correcting code; Polar code (coding theory)
In other words, the matrix of the combined transformation A followed by B is simply the product of the individual matrices. When A is an invertible matrix there is a matrix A −1 that represents a transformation that "undoes" A since its composition with A is the identity matrix. In some practical applications, inversion can be computed using ...
A matrix equation of the form = is called a Toeplitz system if is a Toeplitz matrix. If is an Toeplitz matrix, then the system has at most only unique values, rather than . We might therefore expect that the solution of a Toeplitz system would be easier, and indeed that is the case.
The constituent encoders are typically accumulators and each accumulator is used to generate a parity symbol. A single copy of the original data (S 0,K-1) is transmitted with the parity bits (P) to make up the code symbols. The S bits from each constituent encoder are discarded. The parity bit may be used within another constituent code.
The high rank matrix completion in general is NP-Hard. However, with certain assumptions, some incomplete high rank matrix or even full rank matrix can be completed. Eriksson, Balzano and Nowak [10] have considered the problem of completing a matrix with the assumption that the columns of the matrix belong to a union of multiple low-rank subspaces.
A parity plot is a scatterplot that compares a set of results from a computational model against benchmark data. Each point has coordinates ( x , y ), where x is a benchmark value and y is the corresponding value from the model.