enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hilbert's axioms - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_axioms

    Removing five axioms mentioning "plane" in an essential way, namely I.4–8, and modifying III.4 and IV.1 to omit mention of planes, yields an axiomatization of Euclidean plane geometry. Hilbert's axioms, unlike Tarski's axioms, do not constitute a first-order theory because the axioms V.1–2 cannot be expressed in first-order logic.

  3. Method of exhaustion - Wikipedia

    en.wikipedia.org/wiki/Method_of_exhaustion

    The development of analytical geometry and rigorous integral calculus in the 17th-19th centuries subsumed the method of exhaustion so that it is no longer explicitly used to solve problems. An important alternative approach was Cavalieri's principle , also termed the method of indivisibles which eventually evolved into the infinitesimal ...

  4. Geometric logic - Wikipedia

    en.wikipedia.org/wiki/Geometric_logic

    In mathematical logic, geometric logic is an infinitary generalisation of coherent logic, a restriction of first-order logic due to Skolem that is proof-theoretically tractable. Geometric logic is capable of expressing many mathematical theories and has close connections to topos theory .

  5. Mathematical proof - Wikipedia

    en.wikipedia.org/wiki/Mathematical_proof

    P. Oxy. 29, one of the oldest surviving fragments of Euclid's Elements, a textbook used for millennia to teach proof-writing techniques. The diagram accompanies Book II, Proposition 5. [1] A mathematical proof is a deductive argument for a mathematical statement, showing that the stated assumptions logically guarantee the

  6. Geometric proof - Wikipedia

    en.wikipedia.org/?title=Geometric_proof&redirect=no

    This page was last edited on 17 November 2022, at 16:36 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.

  7. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    This geometric argument relies on definitions of arc length and area, which act as assumptions, so it is rather a condition imposed in construction of trigonometric functions than a provable property. [2] For the sine function, we can handle other values. If θ > π /2, then θ > 1. But sin θ ≤ 1 (because of the Pythagorean identity), so sin ...

  8. Foundations of geometry - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_geometry

    Absolute geometry is a geometry based on an axiom system consisting of all the axioms giving Euclidean geometry except for the parallel postulate or any of its alternatives. [69] The term was introduced by János Bolyai in 1832. [70] It is sometimes referred to as neutral geometry, [71] as it is neutral with respect to the parallel postulate.

  9. Butterfly theorem - Wikipedia

    en.wikipedia.org/wiki/Butterfly_theorem

    The butterfly theorem is a classical result in Euclidean geometry, which can be stated as follows: [1]: p. 78 Let M be the midpoint of a chord PQ of a circle, through which two other chords AB and CD are drawn; AD and BC intersect chord PQ at X and Y correspondingly. Then M is the midpoint of XY.