Search results
Results from the WOW.Com Content Network
A Schwarzschild black hole is described by the Schwarzschild metric, and cannot be distinguished from any other Schwarzschild black hole except by its mass. The Schwarzschild black hole is characterized by a surrounding spherical boundary, called the event horizon , which is situated at the Schwarzschild radius ( r s {\displaystyle r_{\text{s ...
For example, the meaning of "r" is physical distance in that classical law, and merely a coordinate in General Relativity.] The Schwarzschild metric can also be derived using the known physics for a circular orbit and a temporarily stationary point mass. [1] Start with the metric with coefficients that are unknown coefficients of :
The Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating uncharged axially symmetric black hole with a quasispherical event horizon.The Kerr metric is an exact solution of the Einstein field equations of general relativity; these equations are highly non-linear, which makes exact solutions very difficult to find.
A simple example of an asymptotically flat spacetime is the Schwarzschild metric solution. More generally, the Kerr metric is also asymptotically flat. But another well known generalization of the Schwarzschild vacuum, the Taub–NUT space, is not asymptotically flat.
The Schwarzschild radius was named after the German astronomer Karl Schwarzschild, who calculated this exact solution for the theory of general relativity in 1916. The Schwarzschild radius is given as r s = 2 G M c 2 , {\displaystyle r_{\text{s}}={\frac {2GM}{c^{2}}},} where G is the gravitational constant , M is the object mass, and c is the ...
In the Schwarzschild coordinates, the Schwarzschild radius = is the radial coordinate of the event horizon = =. In the Kruskal–Szekeres coordinates the event horizon is given by =. Note that the metric is perfectly well defined and non-singular at the event horizon.
Schwarzschild's equation provides a simple explanation for the existence of the greenhouse effect and demonstrates that it requires a non-zero lapse rate. [19] Rising air in the atmosphere expands and cools as the pressure on it falls, producing a negative temperature gradient in the Earth's troposphere.
The Schwarzschild metric is named in honour of its discoverer Karl Schwarzschild, who found the solution in 1915, only about a month after the publication of Einstein's theory of general relativity. It was the first exact solution of the Einstein field equations other than the trivial flat space solution .