Search results
Results from the WOW.Com Content Network
lim – limit of a sequence, or of a function. lim inf – limit inferior. lim sup – limit superior. LLN – law of large numbers. ln – natural logarithm, log e. lnp1 – natural logarithm plus 1 function. ln1p – natural logarithm plus 1 function. log – logarithm. (If without a subscript, this may mean either log 10 or log e.)
In mathematics, a limit is the value that a function (or sequence) approaches as the argument (or index) approaches some value. [1] Limits of functions are essential to calculus and mathematical analysis , and are used to define continuity , derivatives , and integrals .
In the context of limits, this is shorthand for arbitrarily large arguments and its relatives; as with eventually, the intended variant is implicit. As an example, the sequence is frequently in the interval (1/2, 3/2), because there are arbitrarily large n for which the value of the sequence is in the interval.
This article is a stub. You can help Wikipedia by expanding it. This article is a stub. You can help Wikipedia by expanding it.
A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula.
Limit of a function (ε,_δ)-definition of limit, formal definition of the mathematical notion of limit; Limit of a sequence; One-sided limit, either of the two limits of a function as a specified point is approached from below or from above; Limit inferior and limit superior; Limit of a net; Limit point, in topological spaces; Limit (category ...
For example, the set of real numbers consisting of 0, 1, and all numbers in between is an interval, denoted [0, 1] and called the unit interval; the set of all positive real numbers is an interval, denoted (0, ∞); the set of all real numbers is an interval, denoted (−∞, ∞); and any single real number a is an interval, denoted [a, a].
Similarly, every limit of a sequence and limit of a function can be interpreted as a limit of a net. Specifically, the net is eventually in a subset S {\displaystyle S} of X {\displaystyle X} if there exists an N ∈ N {\displaystyle N\in \mathbb {N} } such that for every integer n ≥ N , {\displaystyle n\geq N,} the point a n {\displaystyle a ...