enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Logarithmic growth - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_growth

    In mathematics, logarithmic growth describes a phenomenon whose size or cost can be described as a logarithm function of some input. e.g. y = C log (x). Any logarithm base can be used, since one can be converted to another by multiplying by a fixed constant. [1] Logarithmic growth is the inverse of exponential growth and is very slow. [2]

  3. Log–log plot - Wikipedia

    en.wikipedia.org/wiki/Loglog_plot

    A loglog plot of y = x (blue), y = x 2 (green), and y = x 3 (red). Note the logarithmic scale markings on each of the axes, and that the log x and log y axes (where the logarithms are 0) are where x and y themselves are 1. Comparison of linear, concave, and convex functions when plotted using a linear scale (left) or a log scale (right).

  4. Template:Log(x) - Wikipedia

    en.wikipedia.org/wiki/Template:Log(x)

    All instances of log(x) without a subscript base should be interpreted as a natural logarithm, also commonly written as ln(x) or log e (x The above documentation is transcluded from Template:Log(x)/doc .

  5. Chebyshev function - Wikipedia

    en.wikipedia.org/wiki/Chebyshev_function

    The second Chebyshev function can be seen to be related to the first by writing it as = ⁡where k is the unique integer such that p k ≤ x and x < p k + 1.The values of k are given in OEIS: A206722.

  6. Logarithmically concave function - Wikipedia

    en.wikipedia.org/wiki/Logarithmically_concave...

    Every concave function that is nonnegative on its domain is log-concave. However, the reverse does not necessarily hold. An example is the Gaussian function f(x) = exp(−x 2 /2) which is log-concave since log f(x) = −x 2 /2 is a concave function of x. But f is not concave since the second derivative is positive for | x | > 1:

  7. Iterated logarithm - Wikipedia

    en.wikipedia.org/wiki/Iterated_logarithm

    Demonstrating log* 4 = 2 for the base-e iterated logarithm. The value of the iterated logarithm can be found by "zig-zagging" on the curve y = log b (x) from the input n, to the interval [0,1]. In this case, b = e. The zig-zagging entails starting from the point (n, 0) and iteratively moving to (n, log b (n) ), to (0, log b (n) ), to (log b (n ...

  8. Logarithmic distribution - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_distribution

    A Poisson compounded with Log(p)-distributed random variables has a negative binomial distribution. In other words, if N is a random variable with a Poisson distribution , and X i , i = 1, 2, 3, ... is an infinite sequence of independent identically distributed random variables each having a Log( p ) distribution, then

  9. Volterra series - Wikipedia

    en.wikipedia.org/wiki/Volterra_series

    The Volterra series is a model for non-linear behavior similar to the Taylor series.It differs from the Taylor series in its ability to capture "memory" effects. The Taylor series can be used for approximating the response of a nonlinear system to a given input if the output of the system depends strictly on the input at that particular time.