Search results
Results from the WOW.Com Content Network
A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. [1]
"The amazing number π " (PDF). Nieuw Archief voor Wiskunde. 5th series. 1 (3): 254– 258. Zbl 1173.01300. Kazuya Kato, Nobushige Kurokawa, Saito Takeshi: Number Theory 1: Fermat's Dream. American Mathematical Society, Providence 1993, ISBN 0-8218-0863-X
The number π (/ p aɪ / ⓘ; spelled out as "pi") is a mathematical constant, approximately equal to 3.14159, that is the ratio of a circle's circumference to its diameter.It appears in many formulae across mathematics and physics, and some of these formulae are commonly used for defining π, to avoid relying on the definition of the length of a curve.
((x),(y) = {239, 13 2} is a solution to the Pell equation x 2 − 2 y 2 = −1.) Formulae of this kind are known as Machin-like formulae . Machin's particular formula was used well into the computer era for calculating record numbers of digits of π , [ 39 ] but more recently other similar formulae have been used as well.
Euler's identity asserts that is equal to −1. The expression e i π {\displaystyle e^{i\pi }} is a special case of the expression e z {\displaystyle e^{z}} , where z is any complex number . In general, e z {\displaystyle e^{z}} is defined for complex z by extending one of the definitions of the exponential function from real exponents to ...
Alternatively, the quick approximation 99/70 (≈ 1.41429) for the square root of two was frequently used before the common use of electronic calculators and computers. Despite having a denominator of only 70, it differs from the correct value by less than 1/10,000 (approx. 7.2 × 10 −5). Its simple continued fraction is periodic and given by:
In mathematics, the Leibniz formula for π, named after Gottfried Wilhelm Leibniz, states that = + + = = +,. an alternating series.. It is sometimes called the Madhava–Leibniz series as it was first discovered by the Indian mathematician Madhava of Sangamagrama or his followers in the 14th–15th century (see Madhava series), [1] and was later independently rediscovered by James Gregory in ...
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.