Search results
Results from the WOW.Com Content Network
An example of back titration, the Volhard method, named after Jacob Volhard, involves the addition of excess silver nitrate to the analyte; the silver chloride is filtered, and the remaining silver nitrate is titrated against ammonium thiocyanate, [1] with ferric ammonium sulfate as an indicator which forms blood-red [Fe(OH 2) 5 (SCN)] 2+ at the end point:
Back titration is a titration done in reverse; instead of titrating the original sample, a known excess of standard reagent is added to the solution, and the excess is titrated. A back titration is useful if the endpoint of the reverse titration is easier to identify than the endpoint of the normal titration, as with precipitation reactions
Thus, one standard solution is needed (e.g. HCl) in the direct titration, while two are needed (e.g. HCl and NaOH) in the back-titration. One of the suitable indicators for these titration reactions is Tashiro's indicator. [3] In practice, this analysis is largely automated; specific catalysts accelerate the decomposition. Originally, the ...
The volumetric titration is based on the same principles as the coulometric titration, except that the anode solution above now is used as the titrant solution. The titrant consists of an alcohol (ROH), base (B), SO 2 and a known concentration of I 2. Pyridine has been used as the base in this case. One mole of I 2 is consumed for each mole of ...
Fig. 15. Titration plot of back-titration of excess EDTA with Cu(II) in NH 3 /NH 4 Cl buffered solution. Direct EDTA titrations with metal ions are possible when reaction kinetics are fast, for example zinc, copper, calcium and magnesium. However, with slower reaction kinetics such as those exhibited by cobalt and nickel, back-titrations are used.
If the reaction forms a solid, then a precipitate will form during the titration. A classic example is the reaction between Ag + and Cl − to form the very insoluble salt AgCl. Surprisingly, this usually makes it difficult to determine the endpoint precisely. As a result, precipitation titrations often have to be done as back titrations.
In analytical chemistry, potentiometric titration is a technique similar to direct titration of a redox reaction. It is a useful means of characterizing an acid . No indicator is used; instead the electric potential is measured across the analyte , typically an electrolyte solution.
Figure 2 gives an example; in this example, the two x-intercepts differ by about 0.2 mL but this is a small discrepancy, given the large equivalence volume (0.5% error). Similar equations can be written for the titration of a weak base by strong acid (Gran, 1952; Harris, 1998).