enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Thermal history of Earth - Wikipedia

    en.wikipedia.org/wiki/Thermal_history_of_Earth

    The thermal catastrophe of the Earth can be demonstrated by solving the above equations for the evolution of the mantle with =. The catastrophe is defined as when the mean mantle temperature T man {\displaystyle T_{\text{man}}} exceeds the mantle solidus so that the entire mantle melts.

  3. Earth's internal heat budget - Wikipedia

    en.wikipedia.org/wiki/Earth's_internal_heat_budget

    The evolution of Earth's radiogenic heat flow over time. The radioactive decay of elements in the Earth's mantle and crust results in production of daughter isotopes and release of geoneutrinos and heat energy, or radiogenic heat. About 50% of the Earth's internal heat originates from radioactive decay. [17]

  4. Earth's mantle - Wikipedia

    en.wikipedia.org/wiki/Earth's_mantle

    The internal structure of Earth. Earth's mantle is a layer of silicate rock between the crust and the outer core. It has a mass of 4.01 × 10 24 kg (8.84 × 10 24 lb) and makes up 67% of the mass of Earth. [1] It has a thickness of 2,900 kilometers (1,800 mi) [1] making up about 46% of Earth's radius and 84% of Earth's volume.

  5. Geothermal gradient - Wikipedia

    en.wikipedia.org/wiki/Geothermal_gradient

    Earth cutaway from core to exosphere Geothermal drill machine in Wisconsin, USA. Temperature within Earth increases with depth. Highly viscous or partially molten rock at temperatures between 650 and 1,200 °C (1,200 and 2,200 °F) are found at the margins of tectonic plates, increasing the geothermal gradient in the vicinity, but only the outer core is postulated to exist in a molten or fluid ...

  6. Mantle convection - Wikipedia

    en.wikipedia.org/wiki/Mantle_convection

    Mantle convection is the very slow creep of Earth's solid silicate mantle as convection currents carry heat from the interior to the planet's surface. [2] [3] Mantle convection causes tectonic plates to move around the Earth's surface. [4] The Earth's lithosphere rides atop the asthenosphere, and the two form the components of the upper mantle ...

  7. Lithosphere–asthenosphere boundary - Wikipedia

    en.wikipedia.org/wiki/Lithosphere–asthenosphere...

    A diagram of the internal structure of Earth. The lithosphere consists of the crust and upper solid mantle (lithospheric mantle). The green dashed line marks the LAB. The lithosphere–asthenosphere boundary (referred to as the LAB by geophysicists) represents a mechanical difference between layers in Earth's inner structure.

  8. Post-glacial rebound - Wikipedia

    en.wikipedia.org/wiki/Post-glacial_rebound

    The speed and amount of postglacial rebound is determined by two factors: the viscosity or rheology (i.e., the flow) of the mantle, and the ice loading and unloading histories on the surface of Earth. The viscosity of the mantle is important in understanding mantle convection, plate tectonics, the dynamical processes in Earth, and the thermal ...

  9. Pressure-temperature-time path - Wikipedia

    en.wikipedia.org/wiki/Pressure-temperature-time_path

    An example of using thermal modeling in P-T-t path reconstruction. The above diagram shows the calculated geothermal gradients upon crustal thickening at 0 million year (m.y.) followed by an immediate uplift event at a rate of 1 mm per year. The P-T-t evolution of a rock originally at 40 km below ground is marked as red dots on the diagram.