enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Double factorial - Wikipedia

    en.wikipedia.org/wiki/Double_factorial

    These are counted by the double factorial 15 = (6 − 1)‼. In mathematics, the double factorial of a number n, denoted by n‼, is the product of all the positive integers up to n that have the same parity (odd or even) as n. [1] That is,

  3. Stirling's approximation - Wikipedia

    en.wikipedia.org/wiki/Stirling's_approximation

    Comparison of Stirling's approximation with the factorial. In mathematics, Stirling's approximation (or Stirling's formula) is an asymptotic approximation for factorials. It is a good approximation, leading to accurate results even for small values of .

  4. Error function - Wikipedia

    en.wikipedia.org/wiki/Error_function

    (), where (2n − 1)!! is the double factorial of (2n − 1), which is the product of all odd numbers up to (2n − 1). This series diverges for every finite x , and its meaning as asymptotic expansion is that for any integer N ≥ 1 one has erfc ⁡ x = e − x 2 x π ∑ n = 0 N − 1 ( − 1 ) n ( 2 n − 1 ) ! !

  5. Wilson's theorem - Wikipedia

    en.wikipedia.org/wiki/Wilson's_theorem

    For each of the values of n from 2 to 30, the following table shows the number (n − 1)! and the remainder when (n − 1)! is divided by n. (In the notation of modular arithmetic, the remainder when m is divided by n is written m mod n.) The background color is blue for prime values of n, gold for composite values.

  6. TI-36 - Wikipedia

    en.wikipedia.org/wiki/TI-36

    The TI-36X series is one of the few calculators [5] currently permitted for use on the Fundamentals of Engineering exam. While TI offers other calculators eligible for use on the exam, the TI-36X Pro is the most feature full Texas Instruments calculator permitted. HP and Casio also make calculators permitted on the exam.

  7. Falling and rising factorials - Wikipedia

    en.wikipedia.org/wiki/Falling_and_rising_factorials

    These symbols are collectively called factorial powers. [2] The Pochhammer symbol, introduced by Leo August Pochhammer, is the notation (), where n is a non-negative integer. It may represent either the rising or the falling

  8. Particular values of the gamma function - Wikipedia

    en.wikipedia.org/wiki/Particular_values_of_the...

    The gamma function is an important special function in mathematics.Its particular values can be expressed in closed form for integer and half-integer arguments, but no simple expressions are known for the values at rational points in general.

  9. Associated Legendre polynomials - Wikipedia

    en.wikipedia.org/wiki/Associated_Legendre...

    In mathematics, the associated Legendre polynomials are the canonical solutions of the general Legendre equation () + [(+)] =,or equivalently [() ()] + [(+)] =,where the indices ℓ and m (which are integers) are referred to as the degree and order of the associated Legendre polynomial respectively.