enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Riemannian manifold - Wikipedia

    en.wikipedia.org/wiki/Riemannian_manifold

    A Riemannian manifold is a smooth manifold together with a Riemannian metric. The techniques of differential and integral calculus are used to pull geometric data out of the Riemannian metric. For example, integration leads to the Riemannian distance function, whereas differentiation is used to define curvature and parallel transport.

  3. Divergence - Wikipedia

    en.wikipedia.org/wiki/Divergence

    The divergence of a vector field extends naturally to any differentiable manifold of dimension n that has a volume form (or density) μ, e.g. a Riemannian or Lorentzian manifold. Generalising the construction of a two-form for a vector field on R 3, on such a manifold a vector field X defines an (n − 1)-form j = i X μ obtained by contracting ...

  4. Divergence theorem - Wikipedia

    en.wikipedia.org/wiki/Divergence_theorem

    This is the divergence theorem. [2] The divergence theorem is employed in any conservation law which states that the total volume of all sinks and sources, that is the volume integral of the divergence, is equal to the net flow across the volume's boundary. [3]

  5. List of formulas in Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    Let be a smooth manifold and let be a one-parameter family of Riemannian or pseudo-Riemannian metrics. Suppose that it is a differentiable family in the sense that for any smooth coordinate chart, the derivatives v i j = ∂ ∂ t ( ( g t ) i j ) {\displaystyle v_{ij}={\frac {\partial }{\partial t}}{\big (}(g_{t})_{ij}{\big )}} exist and are ...

  6. Laplace–Beltrami operator - Wikipedia

    en.wikipedia.org/wiki/Laplace–Beltrami_operator

    The Laplace–Beltrami operator, like the Laplacian, is the (Riemannian) divergence of the (Riemannian) gradient: = (). An explicit formula in local coordinates is possible. Suppose first that M is an oriented Riemannian manifold.

  7. Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/Riemannian_geometry

    Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as smooth manifolds with a Riemannian metric (an inner product on the tangent space at each point that varies smoothly from point to point). This gives, in particular, local notions of angle, length of curves, surface area and volume.

  8. Levi-Civita connection - Wikipedia

    en.wikipedia.org/wiki/Levi-Civita_connection

    M, g) denotes a pseudo-Riemannian manifold. TM is the tangent bundle of M. g is the pseudo-Riemannian metric of M. X, Y, Z are smooth vector fields on M, i. e. smooth sections of TM. [X, Y] is the Lie bracket of X and Y. It is again a smooth vector field. The metric g can take up to two vectors or vector fields X, Y as arguments.

  9. Volume form - Wikipedia

    en.wikipedia.org/wiki/Volume_form

    A manifold admits a nowhere-vanishing volume form if and only if it is orientable. An orientable manifold has infinitely many volume forms, since multiplying a volume form by a nowhere-vanishing real valued function yields another volume form. On non-orientable manifolds, one may instead define the weaker notion of a density.