enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rigid body dynamics - Wikipedia

    en.wikipedia.org/wiki/Rigid_body_dynamics

    In the physical science of dynamics, rigid-body dynamics studies the movement of systems of interconnected bodies under the action of external forces.The assumption that the bodies are rigid (i.e. they do not deform under the action of applied forces) simplifies analysis, by reducing the parameters that describe the configuration of the system to the translation and rotation of reference ...

  3. Screw theory - Wikipedia

    en.wikipedia.org/wiki/Screw_theory

    A twist is a screw used to represent the velocity of a rigid body as an angular velocity around an axis and a linear velocity along this axis. All points in the body have the same component of the velocity along the axis, however the greater the distance from the axis the greater the velocity in the plane perpendicular to this axis.

  4. Free body diagram - Wikipedia

    en.wikipedia.org/wiki/Free_body_diagram

    A force arrow should lie along the line of force, but where along the line is irrelevant. A force on an extended rigid body is a sliding vector. non-rigid extended. The point of application of a force becomes crucial and has to be indicated on the diagram. A force on a non-rigid body is a bound vector. Some use the tail of the arrow to indicate ...

  5. Applied mechanics - Wikipedia

    en.wikipedia.org/wiki/Applied_mechanics

    The study of statics is the study and describing of bodies at rest. [4] Static analysis in classical mechanics can be broken down into two categories, non-deformable bodies and deformable bodies. [4] When studying non-deformable bodies, considerations relating to the forces acting on the rigid structures are analyzed.

  6. Statics - Wikipedia

    en.wikipedia.org/wiki/Statics

    Statics is used in the analysis of structures, for instance in architectural and structural engineering. Strength of materials is a related field of mechanics that relies heavily on the application of static equilibrium. A key concept is the center of gravity of a body at rest: it represents an imaginary point at which all the mass of a

  7. Analytical Dynamics of Particles and Rigid Bodies - Wikipedia

    en.wikipedia.org/wiki/Analytical_Dynamics_of...

    Chapter five introduces the moment of inertia and angular momentum to prepare for the study of the dynamics of rigid bodies. [7] Chapter six focuses on the solutions of problems in rigid body dynamics, with exercises including "motion of a rod on which an insect is crawling" and the motion of a spinning top.

  8. Rigid body - Wikipedia

    en.wikipedia.org/wiki/Rigid_body

    In physics, a rigid body, also known as a rigid object, [2] is a solid body in which deformation is zero or negligible, when a deforming pressure or deforming force is applied on it. The distance between any two given points on a rigid body remains constant in time regardless of external forces or moments exerted on it.

  9. Euler's equations (rigid body dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler's_equations_(rigid...

    In classical mechanics, Euler's rotation equations are a vectorial quasilinear first-order ordinary differential equation describing the rotation of a rigid body, using a rotating reference frame with angular velocity ω whose axes are fixed to the body. They are named in honour of Leonhard Euler.