Search results
Results from the WOW.Com Content Network
Cyanobacterial cell division and cell growth mutant phenotypes in Synechocystis, Synechococcus, and Anabaena.Stars indicate gene essentiality in the respective organism. While one gene can be essential in one cyanobacterial organism/morphotype, it does not necessarily mean it is essential in all other cyanobacteria.
The function of the cyanobiont depends on its host species. Abundant marine cyanobacteria in the genus Synechococcus form symbionts with dinoflagellates in the genera Ornithocercus, Histionesis and Citharistes, where it is hypothesized to benefit its host through the provision of fixed nitrogen in oligotrophic, subtropical waters. [24]
Cyanobacteria are variable in morphology, ranging from unicellular and filamentous to colonial forms. Filamentous forms exhibit functional cell differentiation such as heterocysts (for nitrogen fixation), akinetes (resting stage cells), and hormogonia (reproductive, motile filaments). These, together with the intercellular connections they ...
Thirdly, plant morphology studies plant structure at a range of scales. At the smallest scales are ultrastructure, the general structural features of cells visible only with the aid of an electron microscope, and cytology, the study of cells using optical microscopy. At this scale, plant morphology overlaps with plant anatomy as a
Nostoc, also known as star jelly, troll's butter, spit of moon, fallen star, witch's butter (not to be confused with the fungi commonly known as witches' butter), and witch's jelly, is the most common genus of cyanobacteria found in a variety of both aquatic and terrestrial environments that may form colonies composed of filaments of moniliform cells in a gelatinous sheath of polysaccharides. [1]
The light-harvesting complex (or antenna complex; LH or LHC) is an array of protein and chlorophyll molecules embedded in the thylakoid membrane of plants and cyanobacteria, which transfer light energy to one chlorophyll a molecule at the reaction center of a photosystem. The antenna pigments are predominantly chlorophyll b, xanthophylls, and ...
Cyanobacteria were the first organisms to achieve photosynthesis. [4] Chlorophyll and phycocyanine—two pigments contained in cyanobacteria—allow the vegetative cells to absorb light and transform it into nutrients. [4] The genus Aphanizomenon is defined as a cluster of eight morphospecies, including Aphanizomenon flos-aquae. [5]
Additionally, the morphology of cyanobacteria can differ significantly between their free-living and lichenised states, complicating traditional identification methods based on visual characteristics. [3] Modern research increasingly relies on molecular techniques, including DNA sequencing and genomic analysis.