enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    The function e (−1/x 2) is not analytic at x = 0: the Taylor series is identically 0, although the function is not. If f ( x ) is given by a convergent power series in an open disk centred at b in the complex plane (or an interval in the real line), it is said to be analytic in this region.

  3. Ming Antu's infinite series expansion of trigonometric ...

    en.wikipedia.org/wiki/Ming_Antu's_infinite_series...

    Fig. 1: The Ming Antu Model Fig. 3: Ming Antu independently discovered Catalan numbers.. Ming Antu's infinite series expansion of trigonometric functions.Ming Antu, a court mathematician of the Qing dynasty did extensive work on the infinite series expansion of trigonometric functions in his masterpiece Geyuan Milü Jiefa (Quick Method of Dissecting the Circle and Determination of The Precise ...

  4. Series expansion - Wikipedia

    en.wikipedia.org/wiki/Series_expansion

    A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form = and converges in an annulus. [6] In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.

  5. Trigonometric series - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_series

    The uniqueness and the zeros of trigonometric series was an active area of research in 19th century Europe. First, Georg Cantor proved that if a trigonometric series is convergent to a function on the interval [,], which is identically zero, or more generally, is nonzero on at most finitely many points, then the coefficients of the series are all zero.

  6. Radius of convergence - Wikipedia

    en.wikipedia.org/wiki/Radius_of_convergence

    Since y is real, that happens only if cos(y) = 1 and sin(y) = 0, so that y is an integer multiple of 2 π. Consequently the singular points of this function occur at z = a nonzero integer multiple of 2 π i. The singularities nearest 0, which is the center of the power series expansion, are at ±2 π i.

  7. Sin (video game) - Wikipedia

    en.wikipedia.org/wiki/Sin_(video_game)

    SiN Gold incorporates the Wages of Sin expansion pack, adds support for modern resolutions, restores the original game assets, and fixes many bugs. [ 39 ] Additionally, alongside the Gold edition, Nightdive announced plans for a remastered version of Sin to run on their Kex engine, scheduled for release in late 2020 or early 2021.

  8. Sinc function - Wikipedia

    en.wikipedia.org/wiki/Sinc_function

    It is an interpolating function, i.e., sinc(0) = 1, and sinc(k) = 0 for nonzero integer k. The functions x k (t) = sinc(t − k) (k integer) form an orthonormal basis for bandlimited functions in the function space L 2 (R), with highest angular frequency ω H = π (that is, highest cycle frequency f H = ⁠ 1 / 2 ⁠). Other properties of the ...

  9. Trigonometric functions of matrices - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions_of...

    The analog of the Pythagorean trigonometric identity holds: [2] ⁡ + ⁡ = If X is a diagonal matrix, sin X and cos X are also diagonal matrices with (sin X) nn = sin(X nn) and (cos X) nn = cos(X nn), that is, they can be calculated by simply taking the sines or cosines of the matrices's diagonal components.