Search results
Results from the WOW.Com Content Network
That is, the Taylor series diverges at x if the distance between x and b is larger than the radius of convergence. The Taylor series can be used to calculate the value of an entire function at every point, if the value of the function, and of all of its derivatives, are known at a single point. Uses of the Taylor series for analytic functions ...
The Taylor series of f converges uniformly to the zero function T f (x) = 0, which is analytic with all coefficients equal to zero. The function f is unequal to this Taylor series, and hence non-analytic. For any order k ∈ N and radius r > 0 there exists M k,r > 0 satisfying the remainder bound above.
Brook Taylor was born in Edmonton (former Middlesex). Taylor was the son of John Taylor, MP of Patrixbourne, Kent [1] and Olivia Tempest, the daughter of Sir Nicholas Tempest, Baronet of Durham. [2] He entered St John's College, Cambridge, as a fellow-commoner in 1701, and took degrees in LL.B. in 1709 and LL.D. in 1714. [3]
A Taylor series of f about point a may diverge, converge at only the point a, converge for all x such that | | < (the largest such R for which convergence is guaranteed is called the radius of convergence), or converge on the entire real line. Even a converging Taylor series may converge to a value different from the value of the function at ...
Given a twice continuously differentiable function of one real variable, Taylor's theorem for the case = states that = + ′ () + where is the remainder term. The linear approximation is obtained by dropping the remainder: () + ′ ().
Power series are useful in mathematical analysis, where they arise as Taylor series of infinitely differentiable functions. In fact, Borel's theorem implies that every power series is the Taylor series of some smooth function. In many situations, the center c is equal to zero, for instance for Maclaurin series.
This can be useful, for example, in calculating the size of the material needed to make a parabolic reflector or parabolic trough. This calculation can be used for a parabola in any orientation. It is not restricted to the situation where the axis of symmetry is parallel to the y axis.
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.