Search results
Results from the WOW.Com Content Network
Two basic types of false position method can be distinguished historically, simple false position and double false position. Simple false position is aimed at solving problems involving direct proportion. Such problems can be written algebraically in the form: determine x such that
The formula below converges quadratically when the function is well-behaved, which implies that the number of additional significant digits found at each step approximately doubles; but the function has to be evaluated twice for each step, so the overall order of convergence of the method with respect to function evaluations rather than with ...
Retrieved from "https://en.wikipedia.org/w/index.php?title=Rule_of_false_position&oldid=906963438"
This means that the false position method always converges; however, only with a linear order of convergence. Bracketing with a super-linear order of convergence as the secant method can be attained with improvements to the false position method (see Regula falsi § Improvements in regula falsi) such as the ITP method or the Illinois method.
False position and regula falsi are often treated as names for the same algorithm or class of algorithms. Yes, I don't deny that, and I concede that Wikipedia's policy is not to promote new usages. But, as you said, both names are widely-used and well-established. That means that Wikipedia isn't compelled to use one instead of the other.
Illustration of the false positition method. Created by Jitse Niesen using Xfig. Date: 19 June 2006 (original upload date) Source: No machine-readable source provided. Own work assumed (based on copyright claims). Author: No machine-readable author provided. Jitse Niesen assumed (based on copyright claims). SVG development
The false positive rate (FPR) is the proportion of all negatives that still yield positive test outcomes, i.e., the conditional probability of a positive test result given an event that was not present. The false positive rate is equal to the significance level. The specificity of the test is equal to 1 minus the false positive rate.
Vincenty's goal was to express existing algorithms for geodesics on an ellipsoid in a form that minimized the program length (Vincenty 1975a). His unpublished report (1975b) mentions the use of a Wang 720 desk calculator, which had only a few kilobytes of memory.