Search results
Results from the WOW.Com Content Network
In statistics, dispersion (also called variability, scatter, or spread) is the extent to which a distribution is stretched or squeezed. [1] Common examples of measures of statistical dispersion are the variance, standard deviation, and interquartile range. For instance, when the variance of data in a set is large, the data is widely scattered.
In descriptive statistics, the interquartile range (IQR) is a measure of statistical dispersion, which is the spread of the data. [1] The IQR may also be called the midspread, middle 50%, fourth spread, or H‑spread. It is defined as the difference between the 75th and 25th percentiles of the data.
The median absolute deviation is a measure of statistical dispersion. Moreover, the MAD is a robust statistic, being more resilient to outliers in a data set than the standard deviation. In the standard deviation, the distances from the mean are squared, so large deviations are weighted more heavily, and thus outliers can heavily influence it ...
In statistics, the interdecile range is the difference between the first and the ninth deciles (10% and 90%). The interdecile range is a measure of statistical dispersion of the values in a set of data, similar to the range and the interquartile range, and can be computed from the (non-parametric) seven-number summary.
The semivariance is calculated in the same manner as the variance but only those observations that fall below the mean are included in the calculation: =: < It is also described as a specific measure in different fields of application. For skewed distributions, the semivariance can provide additional information that a variance does not.
Robust measures of scale can be used as estimators of properties of the population, either for parameter estimation or as estimators of their own expected value.. For example, robust estimators of scale are used to estimate the population standard deviation, generally by multiplying by a scale factor to make it an unbiased consistent estimator; see scale parameter: estimation.
A large standard deviation indicates that the data points can spread far from the mean and a small standard deviation indicates that they are clustered closely around the mean. For example, each of the three populations {0, 0, 14, 14}, {0, 6, 8, 14} and {6, 6, 8, 8} has a mean of 7. Their standard deviations are 7, 5, and 1, respectively.
Various measures of statistical dispersion satisfy these. In order to make the statistic a consistent estimator for the scale parameter, one must in general multiply the statistic by a constant scale factor. This scale factor is defined as the theoretical value of the value obtained by dividing the required scale parameter by the asymptotic ...