Search results
Results from the WOW.Com Content Network
If the domain of definition equals X, one often says that the partial function is a total function. In several areas of mathematics the term "function" refers to partial functions rather than to ordinary functions. This is typically the case when functions may be specified in a way that makes difficult or even impossible to determine their domain.
Functional notation: if the first is the name (symbol) of a function, denotes the value of the function applied to the expression between the parentheses; for example, (), (+). In the case of a multivariate function , the parentheses contain several expressions separated by commas, such as f ( x , y ) {\displaystyle f(x,y)} .
Mathematical notation consists of using symbols for representing operations, unspecified numbers, relations, and any other mathematical objects and assembling them into expressions and formulas. Mathematical notation is widely used in mathematics , science , and engineering for representing complex concepts and properties in a concise ...
For instance, suppose that v(P(t)) has constant components in the U 1 coordinate system. That is, the functions v 1 (φ 1 −1 (P(t))) are constant. However, applying the product rule to and using the fact that dv 1 /dt = 0 gives
The function Φ(t,x) is called the evolution function of the dynamical system: it associates to every point x in the set X a unique image, depending on the variable t, called the evolution parameter. X is called phase space or state space, while the variable x represents an initial state of the system. We often write
At the same time, the mapping of a function to the value of the function at a point is a functional; here, is a parameter. Provided that f {\displaystyle f} is a linear function from a vector space to the underlying scalar field, the above linear maps are dual to each other, and in functional analysis both are called linear functionals .
Therefore, if such a function f is measurable, so is its absolute value | f |, being the sum of two measurable functions. The converse, though, does not necessarily hold: for example, taking f as f = 1 V − 1 2 , {\displaystyle f=1_{V}-{\frac {1}{2}},} where V is a Vitali set , it is clear that f is not measurable, but its absolute value is ...
The 1-form ω constructed in this way respects the transitions between overlapping sets, and therefore descends to give a globally defined 1-form on the principal bundle F G E. It can be shown that ω is a principal connection in the sense that it reproduces the generators of the right G action on F G E , and equivariantly intertwines the right ...