enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sum of two cubes - Wikipedia

    en.wikipedia.org/wiki/Sum_of_two_cubes

    A Cabtaxi number is the smallest positive number that can be expressed as a sum of two integer cubes in n ways, allowing the cubes to be negative or zero as well as positive. The smallest cabtaxi number after Cabtaxi(1) = 0, is Cabtaxi(2) = 91, [5] expressed as:

  3. Sums of three cubes - Wikipedia

    en.wikipedia.org/wiki/Sums_of_three_cubes

    Sum of four cubes problem, whether every integer is a sum of four cubes; Euler's sum of powers conjecture § k = 3, relating to cubes that can be written as a sum of three positive cubes; Plato's number, an ancient text possibly discussing the equation 3 3 + 4 3 + 5 3 = 6 3; Taxicab number, the smallest integer that can be expressed as a sum of ...

  4. Sum of four cubes problem - Wikipedia

    en.wikipedia.org/wiki/Sum_of_four_cubes_problem

    The sum of four cubes problem [1] asks whether every integer is the sum of four cubes of integers. It is conjectured the answer is affirmative, but this conjecture has been neither proven nor disproven. [2] Some of the cubes may be negative numbers, in contrast to Waring's problem on sums of cubes, where they are required to be positive.

  5. Cube (algebra) - Wikipedia

    en.wikipedia.org/wiki/Cube_(algebra)

    Geometrically speaking, a positive integer m is a perfect cube if and only if one can arrange m solid unit cubes into a larger, solid cube. For example, 27 small cubes can be arranged into one larger one with the appearance of a Rubik's Cube, since 3 × 3 × 3 = 27. The difference between the cubes of consecutive integers can be expressed as ...

  6. Taxicab number - Wikipedia

    en.wikipedia.org/wiki/Taxicab_number

    In mathematics, the nth taxicab number, typically denoted Ta(n) or Taxicab(n), is defined as the smallest integer that can be expressed as a sum of two positive integer cubes in n distinct ways. [1] The most famous taxicab number is 1729 = Ta(2) = 1 3 + 12 3 = 9 3 + 10 3, also known as the Hardy-Ramanujan number. [2] [3]

  7. 1729 (number) - Wikipedia

    en.wikipedia.org/wiki/1729_(number)

    [7] 1729 is divisible by 19, the sum of its digits, making it a harshad number in base 10. [8] 1729 is the dimension of the Fourier transform on which the fastest known algorithm for multiplying two numbers is based. [9] This is an example of a galactic algorithm. [10] 1729 can be expressed as the quadratic form.

  8. 153 (number) - Wikipedia

    en.wikipedia.org/wiki/153_(number)

    Only five other numbers can be expressed as the sum of the cubes of their digits: 0, 1, 370, 371 and 407. [4] It is also a Friedman number , since 153 = 3 × 51. The Biggs–Smith graph is a symmetric graph with 153 edges, all equivalent.

  9. Waring's problem - Wikipedia

    en.wikipedia.org/wiki/Waring's_problem

    For example, every natural number is the sum of at most 4 squares, 9 cubes, or 19 fourth powers. Waring's problem was proposed in 1770 by Edward Waring , after whom it is named. Its affirmative answer, known as the Hilbert–Waring theorem , was provided by Hilbert in 1909. [ 1 ]