enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mathematical morphology - Wikipedia

    en.wikipedia.org/wiki/Mathematical_morphology

    The dilation is commutative, also given by = =. If B has a center on the origin, as before, then the dilation of A by B can be understood as the locus of the points covered by B when the center of B moves inside A. In the above example, the dilation of the square of side 10 by the disk of radius 2 is a square of side 14, with rounded corners ...

  3. Curve of constant width - Wikipedia

    en.wikipedia.org/wiki/Curve_of_constant_width

    The Blaschke–Lebesgue theorem says that the Reuleaux triangle has the least area of any convex curve of given constant width. [19] Every proper superset of a body of constant width has strictly greater diameter, and every Euclidean set with this property is a body of constant width.

  4. Dilation (morphology) - Wikipedia

    en.wikipedia.org/wiki/Dilation_(morphology)

    Dilation is commutative, also given by = =. If B has a center on the origin, then the dilation of A by B can be understood as the locus of the points covered by B when the center of B moves inside A. The dilation of a square of size 10, centered at the origin, by a disk of radius 2, also centered at the origin, is a square of side 14, with ...

  5. Sierpiński triangle - Wikipedia

    en.wikipedia.org/wiki/Sierpiński_triangle

    Shrink the triangle to ⁠ 1 / 2 ⁠ height and ⁠ 1 / 2 ⁠ width, make three copies, and position the three shrunken triangles so that each triangle touches the two other triangles at a corner (image 2).

  6. Reuleaux triangle - Wikipedia

    en.wikipedia.org/wiki/Reuleaux_triangle

    Among all shapes of constant width that avoid all points of an integer lattice, the one with the largest width is a Reuleaux triangle. It has one of its axes of symmetry parallel to the coordinate axes on a half-integer line. Its width, approximately 1.54, is the root of a degree-6 polynomial with integer coefficients. [17] [19] [20]

  7. Point-set triangulation - Wikipedia

    en.wikipedia.org/wiki/Point-set_triangulation

    Sometimes it is desirable to have a triangulation with special properties, e.g., in which all triangles have large angles (long and narrow ("splinter") triangles are avoided). [3] Given a set of edges that connect points of the plane, the problem to determine whether they contain a triangulation is NP-complete. [4]

  8. Triangulation (geometry) - Wikipedia

    en.wikipedia.org/wiki/Triangulation_(geometry)

    Lifting each point from the plane to its elevated height lifts the triangles of the triangulation into three-dimensional surfaces, which form an approximation of a three-dimensional landform. A polygon triangulation is a subdivision of a given polygon into triangles meeting edge-to-edge, again with the property that the set of triangle vertices ...

  9. Triangulation - Wikipedia

    en.wikipedia.org/wiki/Triangulation

    Measuring the height of a building with an inclinometer. Triangulation today is used for many purposes, including surveying, navigation, metrology, astrometry, binocular vision, model rocketry and, in the military, the gun direction, the trajectory and distribution of fire power of weapons. The use of triangles to estimate distances dates to ...

  1. Related searches sketch of a dilation of triangle given height and width calculator free

    morphology of dilationdark blue square dilation