Search results
Results from the WOW.Com Content Network
where the degree of a vertex counts the number of times an edge terminates at that vertex. In an undirected graph , this means that each loop increases the degree of a vertex by two. In a directed graph , the term degree may refer either to indegree (the number of incoming edges at each vertex) or outdegree (the number of outgoing edges at ...
In a weighted graph, a vertex may have a large degree because of a small number of connected edges but with large weights just as well as due to a large number of connected edges with unit weights. Graph self-loops, i.e., non-zero entries on the main diagonal of the adjacency matrix, do not affect the graph Laplacian values, but may need to be ...
The degree sequence of an undirected graph is the non-increasing sequence of its vertex degrees; [5] for the above graph it is (5, 3, 3, 2, 2, 1, 0). The degree sequence is a graph invariant, so isomorphic graphs have the same degree sequence. However, the degree sequence does not, in general, uniquely identify a graph; in some cases, non ...
In set theory and graph theory, denotes the set of n-tuples of elements of , that is, ordered sequences of elements that are not necessarily distinct. In the edge ( x , y ) {\displaystyle (x,y)} directed from x {\displaystyle x} to y {\displaystyle y} , the vertices x {\displaystyle x} and y {\displaystyle y} are called the endpoints of the ...
The Cheeger constant (also Cheeger number or isoperimetric number) of a graph is a numerical measure of whether or not a graph has a "bottleneck". The Cheeger constant as a measure of "bottleneckedness" is of great interest in many areas: for example, constructing well-connected networks of computers , card shuffling , and low-dimensional ...
The largest degree in a highly irregular graph is at most half the number of vertices. [ 3 ] If H is a highly irregular graph with maximum degree d , one can construct a highly irregular graph of degree d +1 by taking two copies of H and adding an edge between the two vertices of degree d .
Every vertex of this graph has an even degree. Therefore, this is an Eulerian graph. Following the edges in alphabetical order gives an Eulerian circuit/cycle. In graph theory, an Eulerian trail (or Eulerian path) is a trail in a finite graph that visits every edge exactly once (allowing for revisiting
In graph theory, Brooks' theorem states a relationship between the maximum degree of a graph and its chromatic number. According to the theorem, in a connected graph in which every vertex has at most Δ neighbors, the vertices can be colored with only Δ colors, except for two cases, complete graphs and cycle graphs of odd length, which require ...