Search results
Results from the WOW.Com Content Network
Median test (also Mood’s median-test, Westenberg-Mood median test or Brown-Mood median test) is a special case of Pearson's chi-squared test. It is a nonparametric test that tests the null hypothesis that the medians of the populations from which two or more samples are drawn are identical. The data in each sample are assigned to two groups ...
In a confirmatory or primary screen with replicates, for the i-th test compound with replicates, we calculate the paired difference between the measured value (usually on the log scale) of the compound and the median value of a negative control in a plate, then obtain the mean ¯ and variance of the paired difference across replicates.
The median is 2 in this case, as is the mode, and it might be seen as a better indication of the center than the arithmetic mean of 4, which is larger than all but one of the values. However, the widely cited empirical relationship that the mean is shifted "further into the tail" of a distribution than the median is not generally true.
Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.
The sign test is a statistical test for consistent differences between pairs of observations, such as the weight of subjects before and after treatment. Given pairs of observations (such as weight pre- and post-treatment) for each subject, the sign test determines if one member of the pair (such as pre-treatment) tends to be greater than (or less than) the other member of the pair (such as ...
Use of named column variables x & y in Microsoft Excel. Formula for y=x 2 resembles Fortran, and Name Manager shows the definitions of x & y. In most implementations, a cell, or group of cells in a column or row, can be "named" enabling the user to refer to those cells by a name rather than by a grid reference.
The median absolute deviation (also MAD) is the median of the absolute deviation from the median. It is a robust estimator of dispersion . For the example {2, 2, 3, 4, 14}: 3 is the median, so the absolute deviations from the median are {1, 1, 0, 1, 11} (reordered as {0, 1, 1, 1, 11}) with a median of 1, in this case unaffected by the value of ...
x i is the data element, m(X) is the chosen measure of central tendency of the data set—sometimes the mean (¯), but most often the median. The average absolute deviation (AAD) in statistics is a measure of the dispersion or spread of a set of data points around a central value, usually the mean or median.