Search results
Results from the WOW.Com Content Network
In that case, a and b are π / 2 − φ 1,2 (that is, the, co-latitudes), C is the longitude separation λ 2 − λ 1, and c is the desired d / R . Noting that sin( π / 2 − φ) = cos(φ), the haversine formula immediately follows. To derive the law of haversines, one starts with the spherical law of cosines:
Pascal's calculator (also known as the arithmetic machine or Pascaline) is a mechanical calculator invented by Blaise Pascal in 1642. Pascal was led to develop a calculator by the laborious arithmetical calculations required by his father's work as the supervisor of taxes in Rouen. [2] He designed the machine to add and subtract two numbers ...
Calculator input methods. There are various ways in which calculators interpret keystrokes. These can be categorized into two main types: On a single-step or immediate-execution calculator, the user presses a key for each operation, calculating all the intermediate results, before the final value is shown. [1][2][3] On an expression or formula ...
Originally during this time, 1 point was awarded for leaving an answer blank, however, it was changed in the late 1980s to 2 points. When the competition was shortened as part of the 2000 rebranding from AHSME to AMC, the value of a correct answer was increased to 6 points and the number of questions reduced to 25 (keeping 150 as a perfect score).
You can find instant answers on our AOL Mail help page. Should you need additional assistance we have experts available around the clock at 800-730-2563.
Quadratic formula. The roots of the quadratic function y = 1 2 x2 − 3x + 5 2 are the places where the graph intersects the x -axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.
The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem, has a solution by an inductive method.
A minifloat in 1 byte (8 bit) with 1 sign bit, 4 exponent bits and 3 significand bits (in short, a 1.4.3 minifloat) is demonstrated here. The exponent bias is defined as 7 to center the values around 1 to match other IEEE 754 floats [ 3 ] [ 4 ] so (for most values) the actual multiplier for exponent x is 2 x −7 .