Search results
Results from the WOW.Com Content Network
Cycles of the unit digit of multiples of integers ending in 1, 3, 7 and 9 (upper row), and 2, 4, 6 and 8 (lower row) on a telephone keypad. Figure 1 is used for multiples of 1, 3, 7, and 9. Figure 2 is used for the multiples of 2, 4, 6, and 8. These patterns can be used to memorize the multiples of any number from 0 to 10, except 5.
Numeral or number prefixes are prefixes derived from numerals or occasionally other numbers. In English and many other languages, they are used to coin numerous series of words. For example: simplex, duplex (communication in only 1 direction at a time, in 2 directions simultaneously) unicycle, bicycle, tricycle (vehicle with 1 wheel, 2 wheels ...
For example, 4 multiplied by 3, often written as and spoken as "3 times 4", can be calculated by adding 3 copies of 4 together: 3 × 4 = 4 + 4 + 4 = 12. {\displaystyle 3\times 4=4+4+4=12.} Here, 3 (the multiplier ) and 4 (the multiplicand ) are the factors , and 12 is the product .
The sum of the ones digit, double the tens digit, four times the hundreds digit, and eight times the thousands digit is divisible by 16. 157,648: 7 × 8 + 6 × 4 + 4 × 2 + 8 = 96 17: Subtract 5 times the last digit from the rest. (Works because 51 is divisible by 17.) 221: 22 − 1 × 5 = 17. Add 12 times the last digit to the rest.
To change a common fraction to a decimal, do a long division of the decimal representations of the numerator by the denominator (this is idiomatically also phrased as "divide the denominator into the numerator"), and round the answer to the desired accuracy. For example, to change 1 / 4 to a decimal, divide 1.00 by 4 (" 4 into 1.00 ...
Every decimal representation of a rational number can be converted to a fraction by converting it into a sum of the integer, non-repeating, and repeating parts and then converting that sum to a single fraction with a common denominator. For example, to convert. 8.123 {\textstyle \pm 8.123 {\overline {4567}}} to a fraction one notes the lemma:
In mathematics, parity is the property of an integer of whether it is even or odd. An integer is even if it is divisible by 2, and odd if it is not. [1] For example, −4, 0, and 82 are even numbers, while −3, 5, 7, and 21 are odd numbers. The above definition of parity applies only to integer numbers, hence it cannot be applied to numbers ...
Another common way of expressing the base is writing it as a decimal subscript after the number that is being represented (this notation is used in this article). 1111011 2 implies that the number 1111011 is a base-2 number, equal to 123 10 (a decimal notation representation), 173 8 and 7B 16 (hexadecimal).