enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cartesian coordinate system - Wikipedia

    en.wikipedia.org/wiki/Cartesian_coordinate_system

    Cartesian coordinate system with a circle of radius 2 centered at the origin marked in red. The equation of a circle is (x − a)2 + (y − b)2 = r2 where a and b are the coordinates of the center (a, b) and r is the radius. Cartesian coordinates are named for René Descartes, whose invention of them in the 17th century revolutionized ...

  3. Coordinate system - Wikipedia

    en.wikipedia.org/wiki/Coordinate_system

    In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine the position of the points or other geometric elements on a manifold such as Euclidean space. [1] [2] The order of the coordinates is significant, and they are sometimes identified by their position in an ordered tuple and sometimes ...

  4. Three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Three-dimensional_space

    Three-dimensional space. A representation of a three-dimensional Cartesian coordinate system with the x -axis pointing towards the observer. In geometry, a three-dimensional space ( 3D space, 3-space or, rarely, tri-dimensional space) is a mathematical space in which three values ( coordinates) are required to determine the position of a point.

  5. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    Euclidean vectors such as (2, 3, 4) or (a x, a y, a z) can be rewritten as 2 i + 3 j + 4 k or a x i + a y j + a z k, where i, j, k are unit vectors representing the three Cartesian axes (traditionally x, y, z), and also obey the multiplication rules of the fundamental quaternion units by interpreting the Euclidean vector (a x, a y, a z) as the ...

  6. Cross product - Wikipedia

    en.wikipedia.org/wiki/Cross_product

    In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here ), and is denoted by the symbol . Given two linearly independent vectors a and b, the cross product, a × b ...

  7. Unit vector - Wikipedia

    en.wikipedia.org/wiki/Unit_vector

    Unit vector. In mathematics, a unit vector in a normed vector space is a vector (often a spatial vector) of length 1. A unit vector is often denoted by a lowercase letter with a circumflex, or "hat", as in (pronounced "v-hat"). The term direction vector, commonly denoted as d, is used to describe a unit vector being used to represent spatial ...

  8. Complex plane - Wikipedia

    en.wikipedia.org/wiki/Complex_plane

    In mathematics, the complex plane is the plane formed by the complex numbers, with a Cartesian coordinate system such that the horizontal x -axis, called the real axis, is formed by the real numbers, and the vertical y -axis, called the imaginary axis, is formed by the imaginary numbers . The complex plane allows for a geometric interpretation ...

  9. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    Rotate the vector v = (X, Y, Z) around the rotation vector Q = (X, Y, Z). The angle of rotation will be θ = ‖ Q ‖. Calculate the cosine of the angle times the vector to rotate, plus sine of the angle times the axis of rotation, plus one minus cosine of the angle times the dot product of the vector and rotation axis times the axis of rotation.