Search results
Results from the WOW.Com Content Network
Acute respiratory acidosis occurs when an abrupt failure of ventilation occurs. This failure in ventilation may be caused by depression of the central respiratory center by cerebral disease or drugs, inability to ventilate adequately due to neuromuscular disease (e.g., myasthenia gravis, amyotrophic lateral sclerosis, Guillain–Barré syndrome, muscular dystrophy), or airway obstruction ...
Kussmaul breathing is respiratory compensation for a metabolic acidosis, most commonly occurring in diabetics in diabetic ketoacidosis.Blood gases of a patient with Kussmaul breathing will show a low partial pressure of CO 2 in conjunction with low bicarbonate because of a forced increased respiration (blowing off the carbon dioxide).
Physical exam findings often found in patients with respiratory failure include findings indicative of impaired oxygenation (low blood oxygen level). These include, but are not limited to, the following: Accessory muscle use in breathing or other signs of respiratory distress [6] Altered mental status (eg. confusion, lethargy) [6]
Metabolic acidosis is a serious electrolyte disorder characterized by an imbalance in the body's acid-base balance.Metabolic acidosis has three main root causes: increased acid production, loss of bicarbonate, and a reduced ability of the kidneys to excrete excess acids. [5]
Tissue hypoxia refers to low levels of oxygen in the tissues of the body and the term hypoxia is a general term for low levels of oxygen. [2] Hypoxemia is usually caused by pulmonary disease whereas tissue oxygenation requires additionally adequate circulation of blood and perfusion of tissue to meet metabolic demands.
Blood gas tension refers to the partial pressure of gases in blood. [1] There are several significant purposes for measuring gas tension. [2] The most common gas tensions measured are oxygen tension (P x O 2), carbon dioxide tension (P x CO 2) and carbon monoxide tension (P x CO). [3]
An arterial blood gas (ABG) test, or arterial blood gas analysis (ABGA) measures the amounts of arterial gases, such as oxygen and carbon dioxide.An ABG test requires that a small volume of blood be drawn from the radial artery with a syringe and a thin needle, [1] but sometimes the femoral artery in the groin or another site is used.
This measurement is often used under treatment with a heart lung machine (extracorporeal circulation), and can give the perfusionist an idea of how much flow the patient needs to stay healthy. Tissue oxygen saturation (StO 2) can be measured by near infrared spectroscopy. Although the measurements are still widely discussed, they give an idea ...