Search results
Results from the WOW.Com Content Network
In category theory, a branch of mathematics, an initial object of a category C is an object I in C such that for every object X in C, there exists precisely one morphism I → X. The dual notion is that of a terminal object (also called terminal element ): T is terminal if for every object X in C there exists exactly one morphism X → T .
If A is an object of C, then the functor from C to Set that sends X to Hom C (X,A) (the set of morphisms in C from X to A) is an example of such a functor. If C is a small category (i.e. the collection of its objects forms a set), then the contravariant functors from C to Set, together with natural transformations as morphisms, form a new ...
Formally, we start with a category C with finite products (i.e. C has a terminal object 1 and any two objects of C have a product). A group object in C is an object G of C together with morphisms. m : G × G → G (thought of as the "group multiplication") e : 1 → G (thought of as the "inclusion of the identity element")
Given a diagram F: J → C (thought of as an object in C J), a natural transformation ψ : Δ(N) → F (which is just a morphism in the category C J) is the same thing as a cone from N to F. To see this, first note that Δ(N)(X) = N for all X implies that the components of ψ are morphisms ψ X : N → F(X), which all share the domain N.
Examples of limits and colimits in Ring include: The ring of integers Z is an initial object in Ring. The zero ring is a terminal object in Ring. The product in Ring is given by the direct product of rings. This is just the cartesian product of the underlying sets with addition and multiplication defined component-wise.
For every category C, the free strict monoidal category Σ(C) can be constructed as follows: its objects are lists (finite sequences) A 1, ..., A n of objects of C; there are arrows between two objects A 1, ..., A m and B 1, ..., B n only if m = n, and then the arrows are lists (finite sequences) of arrows f 1: A 1 → B 1, ..., f n: A n → B ...
However, LH does not have a terminal object, and thus is not Cartesian closed. If C has pullbacks and for every arrow p : X → Y, the functor p * : C/Y → C/X given by taking pullbacks has a right adjoint, then C is locally Cartesian closed. If C is locally Cartesian closed, then all of its slice categories C/X are also locally Cartesian closed.
Examples of limits and colimits in Top include: The empty set (considered as a topological space) is the initial object of Top; any singleton topological space is a terminal object. There are thus no zero objects in Top. The product in Top is given by the product topology on the Cartesian product.