Search results
Results from the WOW.Com Content Network
Schematic diagram showing the operation of a turboprop engine Propulsive efficiency for different engine types and Mach numbers. Exhaust thrust in a turboprop is sacrificed in favor of shaft power, which is obtained by extracting additional power (beyond that necessary to drive the compressor) from turbine expansion.
An unusual example of the turboshaft principle is the Pratt & Whitney F135-PW-600 turbofan engine for the STOVL Lockheed F-35B Lightning II – in conventional mode it operates as a turbofan, but when powering the Rolls-Royce LiftSystem, it switches partially to turboshaft mode to send 29,000 horsepower forward through a shaft [1] and partially ...
The TP400 is a three-shaft design, with two compressor turbines and a separate power turbine. Where the turbine is at the rear of the engine, a turboprop engine requires a long drive shaft forwards to the propeller reduction gearbox. Such long shafts can be a difficult design problem and must carefully control any shaft vibration.
Turboprop, turboshaft and turbofan engines have additional turbine stages to drive a propeller, bypass fan or helicopter rotor. In a free turbine the turbine driving the compressor rotates independently of that which powers the propeller or helicopter rotor. Cooling air, bled from the compressor, may be used to cool the turbine blades, vanes ...
The engine was designed to accommodate different gearboxes or shaft drives, for helicopter or turboprop fixed-wing applications. The engine could be operated continuously at angles between 100 degrees upward and 45 degrees downward for STOL or helicopter applications.
The PT6D-114A is based on the PT6A-114A; the main difference is the deletion of the second-stage reduction gearing and output shaft, because the engine is intended for integration with a combining gearbox incorporating power turbine governors and a propeller output shaft. [37] Soloy Dual Pac
A T56 on a mobile test unit at MCAS Futenma, 1982 T56-A-1 (Series I) A 1,600 lb weight (730 kg) engine delivering 3,460 shp (2,580 kW) and 725 lbf (329 kgf; 3.22 kN) residual jet thrust, which is equal to 3,750 equivalent shp (2,800 kW); single-shaft 14-stage axial flow compressor, cannular combustion chamber with 6-cylindrical through-flow combustion liners, 4-stage axial flow turbine; 13,800 ...
The two-shaft, reverse flow design is derived from the Walter M601: its core features a two-stage axial and single-stage centrifugal compressor, an annular combustor and a single turbine stage, and its propulsion section is powered by a single-stage turbine driving a two-stage planetary gearbox.