Search results
Results from the WOW.Com Content Network
Directional selection can be observed in finch beak size, peppered moth color, African cichlid mouth types, and sockeye salmon migration periods. If there is continuous allele frequency change as a result of directional selection generation from generation, there will be observable changes in the phenotypes of the entire population over time.
This is largely because the results of disruptive selection are less stable than the results of directional selection (directional selection favors individuals at only one end of the spectrum). For example, let us take the mathematically straightforward yet biologically improbable case of the rabbits: Suppose directional selection were taking ...
Stabilizing selection is the most common form of nonlinear selection (non-directional) in humans. [13] There are few examples of genes with direct evidence of stabilizing selection in humans. However, most quantitative traits (height, birthweight, schizophrenia) are thought to be under stabilizing selection, due to their polygenicity and the ...
The McDonald–Kreitman test [1] is a statistical test often used by evolutionary and population biologists to detect and measure the amount of adaptive evolution within a species by determining whether adaptive evolution has occurred, and the proportion of substitutions that resulted from positive selection (also known as directional selection).
The first and most common function to estimate fitness of a trait is linear ω =α +βz, which represents directional selection. [1] [10] The slope of the linear regression line (β) is the selection gradient, ω is the fitness of a trait value z, and α is the y-intercept of the fitness function.
Selection can be divided into three classes, on the basis of its effect on allele frequencies: directional, stabilizing, and disruptive selection. [103] Directional selection occurs when an allele has a greater fitness than others, so that it increases in frequency, gaining an increasing share in the population.
Selection is an important process in evolution and can take many forms. ... Directional selection; Disruptive selection;
The existence of limits in artificial selection experiments was discussed in the scientific literature in the 1940s or earlier. [1] The most obvious possible cause of reaching a limit (or plateau) when a population is under continued directional selection is that all of the additive-genetic variation (see additive genetic effects) related to that trait gets "used up" or fixed. [2]