Search results
Results from the WOW.Com Content Network
Separation of variables may be possible in some coordinate systems but not others, [2] and which coordinate systems allow for separation depends on the symmetry properties of the equation. [3] Below is an outline of an argument demonstrating the applicability of the method to certain linear equations, although the precise method may differ in ...
Separable differential equation, in which separation of variables is achieved by various means; Separable extension, in field theory, an algebraic field extension; Separable filter, a product of two or more simple filters in image processing; Separable ordinary differential equation, a class of equations that can be separated into a pair of ...
In the method of separation of variables, one reduces a PDE to a PDE in fewer variables, which is an ordinary differential equation if in one variable – these are in turn easier to solve. This is possible for simple PDEs, which are called separable partial differential equations, and the domain is generally a rectangle (a product of intervals).
Change of variables is an operation that is related to substitution. However these are different operations, as can be seen when considering differentiation or integration (integration by substitution). A very simple example of a useful variable change can be seen in the problem of finding the roots of the sixth-degree polynomial:
Laplace's equation on is an example of a partial differential equation that admits solutions through -separation of variables; in the three-dimensional case this uses 6-sphere coordinates. (This should not be confused with the case of a separable ODE, which refers to a somewhat different class of problems that can be broken into a pair of ...
In mathematics, the biharmonic equation is a fourth-order partial differential equation which arises in areas of continuum mechanics, including linear elasticity theory and the solution of Stokes flows. Specifically, it is used in the modeling of thin structures that react elastically to external forces.
A Boolean function in n variables can be thought of as an assignment of 0 or 1 to each vertex of a Boolean hypercube in n dimensions. This gives a natural division of the vertices into two sets. The Boolean function is said to be linearly separable provided these two sets of points are linearly separable.
Separation axiom, concepts in the area of mathematics called topology; Separation of concerns, in computer science (and problem-solving in general) Separation of variables, in mathematics to solve certain (separable) differential equations; Separation principle, in control theory; Separation process, in chemistry